Biomarkers of Diabetic Foot Ulcers and Its Healing Progress

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 103 Accesses

Abstract

There are urgent, unmet needs in the field of biomarkers of diabetic wound healing. Rapidly develo** molecular technologies supported by the parallel, robust progress in biostatistical and machine learning approaches are offering more granular insights into the disease processes and unraveling potential biomarkers. These methodological and computational innovations are tremendously accelerating biomarker research. National Institute of Diabetes and Digestive and Kidney Diseases has recently funded the Diabetic Foot Consortium, the largest initiative to date aiming to develop and validate biomarkers of diabetic foot ulcers; whereas the Food and Drug Administration and the National Institutes of Health offer an important glossary of nomenclature to help researchers navigate through different types of biomarkers. Multi-molecule signatures rather than single biomarker measurements will likely guide the diabetic wound healing course in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FDA-NIH Biomarker Working Group. BEST (Biomarkers E, and other Tools) Resource [Internet]. Silver Spring, MD: Food and Drug Administration (US); 2016. Co-published by National Institutes of Health (US), Bethesda, MD. Created: 28 Jan 2016; Updated: 25 Jan 2021.

    Google Scholar 

  2. ElSayed NA, Aleppo G, Aroda VR, et al. 12. Retinopathy, neuropathy, and foot care: standards of care in diabetes—2023. Diabetes Care. 2023;46(Suppl 1):S203–s215. (In eng). https://doi.org/10.2337/dc23-S012.

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–75. (In eng). https://doi.org/10.1056/NEJMra1615439.

    Article  PubMed  Google Scholar 

  4. Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic foot ulcers: a review. JAMA. 2023;330(1):62–75. (In eng). https://doi.org/10.1001/jama.2023.10578.

    Article  CAS  PubMed  Google Scholar 

  5. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62. (In eng). https://doi.org/10.1016/s0140-6736(18)31320-5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jones TLZ, Holmes CM, Katona A, et al. The NIDDK Diabetic Foot Consortium. J Diabetes Sci Technol. 2023;17(1):7–14. (In eng). https://doi.org/10.1177/19322968221121152.

    Article  PubMed  Google Scholar 

  7. The Diabetic Foot Consortium (DFC). https://diabeticfootconsortium.org/researchers/.

  8. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care. 2003;26(6):1879–82. (In eng). https://doi.org/10.2337/diacare.26.6.1879.

    Article  PubMed  Google Scholar 

  9. Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48(9):1055–9. (In eng). https://doi.org/10.1038/ng.3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah HS, Gao H, Morieri ML, et al. Genetic predictors of cardiovascular mortality during intensive glycemic control in type 2 diabetes: findings from the ACCORD clinical trial. Diabetes Care. 2016;39(11):1915–24. (In eng). https://doi.org/10.2337/dc16-0285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tofte N, Lindhardt M, Adamova K, et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8(4):301–12. (In eng). https://doi.org/10.1016/s2213-8587(20)30026-7.

    Article  CAS  PubMed  Google Scholar 

  12. Ballman KV. Biomarker: predictive or prognostic? J Clin Oncol. 2015;33(33):3968–71. (In eng). https://doi.org/10.1200/jco.2015.63.3651.

    Article  CAS  PubMed  Google Scholar 

  13. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. (In eng). https://doi.org/10.1126/scitranslmed.3009337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sawaya AP, Pastar I, Stojadinovic O, et al. Topical mevastatin promotes wound healing by inhibiting the transcription factor c-Myc via the glucocorticoid receptor and the long non-coding RNA Gas5. J Biol Chem. 2018;293(4):1439–49. (In eng). https://doi.org/10.1074/jbc.M117.811240.

    Article  CAS  PubMed  Google Scholar 

  15. Stojadinovic O, Brem H, Vouthounis C, et al. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005;167(1):59–69. (In eng). https://doi.org/10.1016/s0002-9440(10)62953-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stojadinovic O, Pastar I, Nusbaum AG, Vukelic S, Krzyzanowska A, Tomic-Canic M. Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair Regen. 2014;22(2):220–7. (In eng). https://doi.org/10.1111/wrr.12142.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berardesca E, Loden M, Serup J, Masson P, Rodrigues LM. The revised EEMCO guidance for the in vivo measurement of water in the skin. Skin Res Technol. 2018;24(3):351–8. (In eng). https://doi.org/10.1111/srt.12599.

    Article  PubMed  Google Scholar 

  18. Klotz T, Ibrahim A, Maddern G, Caplash Y, Wagstaff M. Devices measuring transepidermal water loss: a systematic review of measurement properties. Skin Res Technol. 2022;28(4):497–539. (In eng). https://doi.org/10.1111/srt.13159.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Roy S, Elgharably H, Sinha M, et al. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol. 2014;233(4):331–43. (In eng). https://doi.org/10.1002/path.4360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sen CK, Roy S. The hyperglycemia stranglehold stifles cutaneous epithelial–mesenchymal plasticity and functional wound closure. J Invest Dermatol. 2021;141(6):1382–5. (In eng). https://doi.org/10.1016/j.jid.2020.11.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bajpai A, Nadkarni S, Neidrauer M, Weingarten MS, Lewin PA, Spiller KL. Effects of non-thermal, non-cavitational ultrasound exposure on human diabetic ulcer healing and inflammatory gene expression in a pilot study. Ultrasound Med Biol. 2018;44(9):2043–9. https://doi.org/10.1016/j.ultrasmedbio.2018.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lurier EB, Dalton D, Dampier W, et al. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology. 2017;222(7):847–56. (In eng). https://doi.org/10.1016/j.imbio.2017.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miao M, Niu Y, **e T, Yuan B, Qing C, Lu S. Diabetes-impaired wound healing and altered macrophage activation: a possible pathophysiologic correlation. Wound Repair Regen. 2012;20(2):203–13. (In eng). https://doi.org/10.1111/j.1524-475X.2012.00772.x.

    Article  PubMed  Google Scholar 

  24. Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63(3):1103–14. (In eng). https://doi.org/10.2337/db13-0927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nassiri S, Zakeri I, Weingarten MS, Spiller KL. Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers. J Invest Dermatol. 2015;135(6):1700–3. (In eng). https://doi.org/10.1038/jid.2015.30.

    Article  CAS  PubMed  Google Scholar 

  26. Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35(15):4477–88. (In eng). https://doi.org/10.1016/j.biomaterials.2014.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194–207. (In eng). https://doi.org/10.1016/j.biomaterials.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  28. Theocharidis G, Baltzis D, Roustit M, et al. Integrated skin transcriptomics and serum multiplex assays reveal novel mechanisms of wound healing in diabetic foot ulcers. Diabetes. 2020;69(10):2157–69. https://doi.org/10.2337/db20-0188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tecilazich F, Dinh T, Pradhan-Nabzdyk L, et al. Role of endothelial progenitor cells and inflammatory cytokines in healing of diabetic foot ulcers. PLoS One. 2013;8(12):e83314. https://doi.org/10.1371/journal.pone.0083314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dinh T, Tecilazich F, Kafanas A, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47. https://doi.org/10.2337/db12-0227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med. 2019;25(5):805–13. https://doi.org/10.1038/s41591-019-0415-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobayashi H, Looker HC, Satake E, et al. Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes. Sci Transl Med. 2022;14(657):eabj2109. (In eng). https://doi.org/10.1126/scitranslmed.abj2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ziegler D, Strom A, Bonhof GJ, et al. Deficits in systemic biomarkers of neuroinflammation and growth factors promoting nerve regeneration in patients with type 2 diabetes and polyneuropathy. BMJ Open Diabetes Res Care. 2019;7(1):e000752. https://doi.org/10.1136/bmjdrc-2019-000752.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Herder C, Kannenberg JM, Carstensen-Kirberg M, et al. A systemic inflammatory signature reflecting cross talk between innate and adaptive immunity is associated with incident polyneuropathy: KORA F4/FF4 study. Diabetes. 2018;67(11):2434–42. https://doi.org/10.2337/db18-0060.

    Article  CAS  PubMed  Google Scholar 

  35. Willenborg S, Sanin DE, Jais A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab. 2021;33(12):2398–2414.e9. (In eng). https://doi.org/10.1016/j.cmet.2021.10.004.

    Article  CAS  PubMed  Google Scholar 

  36. Go YM, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50(4):495–509. (In eng). https://doi.org/10.1016/j.freeradbiomed.2010.11.029.

    Article  CAS  PubMed  Google Scholar 

  37. Swaney MH, Kalan LR. Living in your skin: microbes, molecules, and mechanisms. Infect Immun. 2021;89(4):e00695-20. (In eng). https://doi.org/10.1128/iai.00695-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553(7689):427–36. (In eng). https://doi.org/10.1038/nature25177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt BM, Erb-Downward J, Ranjan P, Dickson R. Metagenomics to identify pathogens in diabetic foot ulcers and the potential impact for clinical care. Curr Diab Rep. 2021;21(8):26. (In eng). https://doi.org/10.1007/s11892-021-01391-7.

    Article  PubMed  Google Scholar 

  40. Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104–8. (In eng). https://doi.org/10.1038/nature14052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt BM. Emerging diabetic foot ulcer microbiome analysis using cutting edge technologies. J Diabetes Sci Technol. 2022;16(2):353–63. (In eng). https://doi.org/10.1177/1932296821990097.

    Article  PubMed  Google Scholar 

  42. Dangwal S, Stratmann B, Bang C, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating microRNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2015;35(6):1480–8. (In eng). https://doi.org/10.1161/atvbaha.114.305048.

    Article  CAS  PubMed  Google Scholar 

  43. Liang L, Stone RC, Stojadinovic O, et al. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen. 2016;24(6):943–53. (In eng). https://doi.org/10.1111/wrr.12470.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marjanovic J, Ramirez HA, Jozic I, et al. Dichotomous role of miR193b-3p in diabetic foot ulcers maintains inhibition of healing and suppression of tumor formation. Sci Transl Med. 2022;14(644):eabg8397. (In eng). https://doi.org/10.1126/scitranslmed.abg8397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic actions of microRNAs in diabetic wound healing. Cells. 2020;9(10):2228. (In eng). https://doi.org/10.3390/cells9102228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramirez HA, Pastar I, Jozic I, et al. Staphylococcus aureus triggers induction of miR-15B-5P to diminish DNA repair and deregulate inflammatory response in diabetic foot ulcers. J Invest Dermatol. 2018;138(5):1187–96. (In eng). https://doi.org/10.1016/j.jid.2017.11.038.

    Article  CAS  PubMed  Google Scholar 

  47. Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(7):1617–35. (In eng). https://doi.org/10.2337/dci20-0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5. https://doi.org/10.1056/NEJMp1500523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tahir UA, Gerszten RE. Omics and cardiometabolic disease risk prediction. Annu Rev Med. 2020;71:163–75. (In eng). https://doi.org/10.1146/annurev-med-042418-010924.

    Article  CAS  PubMed  Google Scholar 

  50. Komorowsky CV, Brosius FC III, Pennathur S, Kretzler M. Perspectives on systems biology applications in diabetic kidney disease. J Cardiovasc Transl Res. 2012;5(4):491–508. (In eng). https://doi.org/10.1007/s12265-012-9382-7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hirohama D, Abedini A, Moon S, et al. Unbiased human kidney tissue proteomics identifies matrix metalloproteinase 7 as a kidney disease biomarker. J Am Soc Nephrol. 2023;34(7):1279–91. (In eng). https://doi.org/10.1681/asn.0000000000000141.

    Article  PubMed  Google Scholar 

  52. Fadini GP, Albiero M, Millioni R, et al. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker. Diabetologia. 2014;57(9):1947–56. (In eng). https://doi.org/10.1007/s00125-014-3300-2.

    Article  CAS  PubMed  Google Scholar 

  53. Krisp C, Jacobsen F, McKay MJ, Molloy MP, Steinstraesser L, Wolters DA. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics. 2013;13(17):2670–81. (In eng). https://doi.org/10.1002/pmic.201200502.

    Article  CAS  PubMed  Google Scholar 

  54. Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab. 2009;94(6):2157–63. (In eng). https://doi.org/10.1210/jc.2008-2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu C, Debnath N, Mosoyan G, et al. Systematic review and meta-analysis of plasma and urine biomarkers for CKD outcomes. J Am Soc Nephrol. 2022;33(9):1657–72. (In eng). https://doi.org/10.1681/asn.2022010098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15. https://doi.org/10.1681/ASN.2011060627. ASN.2011060627 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pavkov ME, Nelson RG, Knowler WC, Cheng Y, Krolewski AS, Niewczas MA. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int. 2015;87(4):812–9. https://doi.org/10.1038/ki.2014.330.

    Article  CAS  PubMed  Google Scholar 

  58. Dayon L, Cominetti O, Affolter M. Proteomics of human biological fluids for biomarker discoveries: technical advances and recent applications. Expert Rev Proteomics. 2022;19(2):131–51. https://doi.org/10.1080/14789450.2022.2070477.

    Article  CAS  PubMed  Google Scholar 

  59. Smith JG, Gerszten RE. Emerging affinity-based proteomic technologies for large-scale plasma profiling in cardiovascular disease. Circulation. 2017;135(17):1651–64. (In eng). https://doi.org/10.1161/circulationaha.116.025446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. https://doi.org/10.1126/science.1260419.

    Article  CAS  PubMed  Google Scholar 

  61. Uhlen M, Karlsson MJ, Hober A, et al. The human secretome. Sci Signal. 2019;12(609):eaaz0274. https://doi.org/10.1126/scisignal.aaz0274.

    Article  CAS  PubMed  Google Scholar 

  62. Herder C, Maalmi H, Strassburger K, et al. Differences in biomarkers of inflammation between novel subgroups of recent-onset diabetes. Diabetes. 2021; https://doi.org/10.2337/db20-1054.

  63. Hohendorff J, Drozdz A, Borys S, et al. Effects of negative pressure wound therapy on levels of angiopoetin-2 and other selected circulating signaling molecules in patients with diabetic foot ulcer. J Diabetes Res. 2019;2019:1756798. (In eng). https://doi.org/10.1155/2019/1756798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schlesinger S, Herder C, Kannenberg JM, et al. General and abdominal obesity and incident distal sensorimotor polyneuropathy: insights into inflammatory biomarkers as potential mediators in the KORA F4/FF4 cohort. Diabetes Care. 2019;42(2):240–7. (In eng). https://doi.org/10.2337/dc18-1842.

    Article  CAS  PubMed  Google Scholar 

  65. Md Dom ZI, Satake E, Skupien J, et al. Circulating proteins protect against renal decline and progression to end-stage renal disease in patients with diabetes. Sci Transl Med. 2021;13(600):eabd2699. (In eng). https://doi.org/10.1126/scitranslmed.abd2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Csosz E, Toth N, Deak E, Csutak A, Tozser J. Wound-healing markers revealed by proximity extension assay in tears of patients following glaucoma surgery. Int J Mol Sci. 2018;19(12):4096. (In eng). https://doi.org/10.3390/ijms19124096.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Donatti A, Canto AM, Godoi AB, da Rosa DC, Lopes-Cendes I. Circulating metabolites as potential biomarkers for neurological disorders—metabolites in neurological disorders. Metabolites. 2020;10(10):389. (In eng). https://doi.org/10.3390/metabo10100389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36(4):316–20. (In eng). https://doi.org/10.1038/nbt.4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pang Z, Zhou G, Ewald J, et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17(8):1735–61. (In eng). https://doi.org/10.1038/s41596-022-00710-w.

    Article  CAS  PubMed  Google Scholar 

  70. Álvarez R II, Castaño-Tostado E, García-Gutiérrez DG, et al. Non-targeted metabolomic analysis reveals serum phospholipid alterations in patients with early stages of diabetic foot ulcer. Biomark Insights. 2020;15:1177271920954828. (In eng). https://doi.org/10.1177/1177271920954828.

    Article  Google Scholar 

  71. Hung SY, Tsai JS, Yeh JT, et al. Amino acids and wound healing in people with limb-threatening diabetic foot ulcers. J Diabetes Complicat. 2019;33(10):107403. (In eng). https://doi.org/10.1016/j.jdiacomp.2019.06.008.

    Article  Google Scholar 

  72. Mathew AV, Jaiswal M, Ang L, Michailidis G, Pennathur S, Pop-Busui R. Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in type 1 diabetes. Diabetes. 2019;68(10):2035–44. (In eng). https://doi.org/10.2337/db19-0145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Niewczas MA, Mathew AV, Croall S, et al. Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care. 2017;40(3):383–90. (In eng). https://doi.org/10.2337/dc16-0173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int. 2014;85(5):1214–24. (In eng). https://doi.org/10.1038/ki.2013.497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moon S, Tsay JJ, Lampert H, et al. Circulating short and medium chain fatty acids are associated with normoalbuminuria in type 1 diabetes of long duration. Sci Rep. 2021;11(1):8592. (In eng). https://doi.org/10.1038/s41598-021-87585-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shah HS, Moreno LO, Morieri ML, et al. Serum orotidine: a novel biomarker of increased CVD risk in type 2 diabetes discovered through metabolomics studies. Diabetes Care. 2022;45(8):1882–92. (In eng). https://doi.org/10.2337/dc21-1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sawaya AP, Stone RC, Brooks SR, et al. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun. 2020;11(1):4678. (In eng). https://doi.org/10.1038/s41467-020-18276-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Theocharidis G, Thomas BE, Sarkar D, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022;13(1):181. (In eng). https://doi.org/10.1038/s41467-021-27801-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schmidt BM, Holmes CM, Najarian K, et al. On diabetic foot ulcer knowledge gaps, innovation, evaluation, prediction markers, and clinical needs. J Diabetes Complicat. 2022;36(11):108317. (In eng). https://doi.org/10.1016/j.jdiacomp.2022.108317.

    Article  Google Scholar 

  80. Sumpio BJ, Li Z, Wang E, Mezghani I, Theocharidis G, Veves A. Future directions in research in transcriptomics in the healing of diabetic foot ulcers. Adv Ther. 2023;40(1):67–75. (In eng). https://doi.org/10.1007/s12325-022-02348-2.

    Article  PubMed  Google Scholar 

  81. Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med. 2013;64:85–94. (In eng). https://doi.org/10.1016/j.freeradbiomed.2013.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Natarajan R, Putta S, Kato M. MicroRNAs and diabetic complications. J Cardiovasc Transl Res. 2012;5(4):413–22. (In eng). https://doi.org/10.1007/s12265-012-9368-5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kato M, Natarajan R. Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol. 2014;10(9):517–30. (In eng). https://doi.org/10.1038/nrneph.2014.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. (In eng). https://doi.org/10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther. 2016;20(6):509–18. (In eng). https://doi.org/10.1007/s40291-016-0221-4.

    Article  CAS  PubMed  Google Scholar 

  86. Banerjee J, Sen CK. microRNA and wound healing. Adv Exp Med Biol. 2015;888:291–305. (In eng). https://doi.org/10.1007/978-3-319-22671-2_15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramirez HA, Liang L, Pastar I, et al. Comparative genomic, microRNA, and tissue analyses reveal subtle differences between non-diabetic and diabetic foot skin. PLoS One. 2015;10(8):e0137133. (In eng). https://doi.org/10.1371/journal.pone.0137133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kalan L, Loesche M, Hodkinson BP, et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. mBio. 2016;7(5):e01058-16. (In eng). https://doi.org/10.1128/mBio.01058-16.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kalan LR, Meisel JS, Loesche MA, et al. Strain- and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy. Cell Host Microbe. 2019;25(5):641–655.e5. (In eng). https://doi.org/10.1016/j.chom.2019.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sloan TJ, Turton JC, Tyson J, et al. Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection. J Med Microbiol. 2019;68(2):230–40. (In eng). https://doi.org/10.1099/jmm.0.000907.

    Article  CAS  PubMed  Google Scholar 

  91. McShane LM, Cavenagh MM, Lively TG, et al. Criteria for the use of omics-based predictors in clinical trials. Nature. 2013;502(7471):317–20. https://doi.org/10.1038/nature12564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hirata S, Dirven L, Shen Y, et al. A multi-biomarker score measures rheumatoid arthritis disease activity in the BeSt study. Rheumatology (Oxford). 2013;52(7):1202–7. https://doi.org/10.1093/rheumatology/kes362.

    Article  CAS  PubMed  Google Scholar 

  93. Kobayashi H, Looker HC, Satake E, et al. Results of untargeted analysis using the SOMAscan proteomics platform indicates novel associations of circulating proteins with risk of progression to kidney failure in diabetes. Kidney Int. 2022;102(2):370–81. https://doi.org/10.1016/j.kint.2022.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Foster DS, Januszyk M, Yost KE, et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci USA. 2021;118(41):e2110025118. (In eng). https://doi.org/10.1073/pnas.2110025118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Satake E, Pezzolesi MG, Md Dom ZI, Smiles AM, Niewczas MA, Krolewski AS. Circulating miRNA profiles associated with hyperglycemia in patients with type 1 diabetes. Diabetes. 2018;67(5):1013–23. (In eng). https://doi.org/10.2337/db17-1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stojadinovic O, Landon JN, Gordon KA, et al. Quality assessment of tissue specimens for studies of diabetic foot ulcers. Exp Dermatol. 2013;22(3):216–8. (In eng). https://doi.org/10.1111/exd.12104.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kounas K, Dinh T, Riemer K, Rosenblum BI, Veves A, Giurini JM. Use of hyperspectral imaging to predict healing of diabetic foot ulceration. Wound Repair Regen. 2023;31(2):199–204. (In eng). https://doi.org/10.1111/wrr.13071.

    Article  PubMed  Google Scholar 

  98. Kim RB, Gryak J, Mishra A, et al. Utilization of smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers. Comput Biol Med. 2020;126:104042. (In eng). https://doi.org/10.1016/j.compbiomed.2020.104042.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Brunner PM, Suarez-Farinas M, He H, et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci Rep. 2017;7(1):8707. https://doi.org/10.1038/s41598-017-09207-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pavel AB, Zhou L, Diaz A, et al. The proteomic skin profile of moderate-to-severe atopic dermatitis patients shows an inflammatory signature. J Am Acad Dermatol. 2020;82(3):690–9. https://doi.org/10.1016/j.jaad.2019.10.039.

    Article  CAS  PubMed  Google Scholar 

  101. Garshick MS, Baumer Y, Dey AK, et al. Characterization of PCSK9 in the blood and skin of psoriasis. J Invest Dermatol. 2020;141:308. https://doi.org/10.1016/j.jid.2020.05.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Haslam DE, Li J, Dillon ST, et al. Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics. 2022;22(13–14):e2100170. (In eng). https://doi.org/10.1002/pmic.202100170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    Article  Google Scholar 

  104. Austin PC, Harrell FE Jr, Steyerberg EW. Predictive performance of machine and statistical learning methods: impact of data-generating processes on external validity in the “large N, small p” setting. Stat Methods Med Res. 2021;30(6):1465–83. https://doi.org/10.1177/09622802211002867.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16(3):199–215. http://www.jstor.org/stable/2676681.

    Article  Google Scholar 

  106. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26. https://doi.org/10.18637/jss.v028.i05.

    Article  Google Scholar 

  107. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301–20. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

    Article  Google Scholar 

  108. Gomes B, Ashley EA. Artificial intelligence in molecular medicine. N Engl J Med. 2023;388(26):2456–65. (In eng). https://doi.org/10.1056/NEJMra2204787.

    Article  CAS  PubMed  Google Scholar 

  109. Florez JC. Precision medicine in diabetes: is it time? Diabetes Care. 2016;39(7):1085–8. (In eng). https://doi.org/10.2337/dc16-0586.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika A. Niewczas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niewczas, M.A., Shah, H. (2024). Biomarkers of Diabetic Foot Ulcers and Its Healing Progress. In: Veves, A., Giurini, J.M., Schermerhorn, M.L. (eds) The Diabetic Foot. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-55715-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55715-6_18

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-55714-9

  • Online ISBN: 978-3-031-55715-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation