Diversified Analytical Methods Used to Analyze Plastic Biodegradation

  • Chapter
  • First Online:
Advanced Strategies for Biodegradation of Plastic Polymers

Abstract

Analytical methods for microplastics are essential for understanding and monitoring the degradation processes of these micromaterials, with some techniques even being able to identify them in living organisms. This chapter presents the fundamentals and applications of the main methods for the analysis of microplastics with a focus on degradation processes in environmental samples. Optical, electron, and atomic force microscopy methods are described. Spectrometric, thermal analysis, and chromatographic methods are also described. This wide variety of methods must be used together to obtain an integral qualitative and quantitative characterization. Hybrid techniques are of great interest as they show the best performance. Research on analytical methods for microplastics is still an area of opportunity, as there are still many practical limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubaker, S. A., & Taha, A. H. (2021). Identification and characterization of different types of plastics wastes using X-ray diffraction and X-ray fluorescence techniques. ARO-The Scientific Journal of Koya University, 9(2), 22–25.

    Article  Google Scholar 

  • Achilias, D. S., Panayotidou, E., & Zuburtikudis, I. (2011). Thermal degradation kinetics and isoconversional analysis of biodegradable poly (3-hydroxybutyrate)/organomodified montmorillonite nanocomposites. Thermochimica Acta, 514(1–2), 58–66.

    Article  CAS  Google Scholar 

  • Ali, S. S., Elsamahy, T., Al-Tohamy, R., Zhu, D., Mahmoud, Y. A.-G., Koutra, E., Metwally, M. A., Kornaros, M., & Sun, J. (2021). Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of the Total Environment, 780, 146590.

    Article  CAS  Google Scholar 

  • Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 12(2), 205.

    Article  CAS  Google Scholar 

  • Archiza, B., Welch, J. F., & Sheel, A. W. (2017). Classical experiments in whole-body metabolism: Closed-circuit respirometry. European Journal of Applied Physiology, 117, 1929–1937.

    Article  Google Scholar 

  • Arráez, F. J., Arnal, M. L., & Müller, A. J. (2019). Thermal degradation of high-impact polystyrene with pro-oxidant additives. Polymer Bulletin, 76, 1489–1515.

    Article  Google Scholar 

  • Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467–474.

    Article  CAS  Google Scholar 

  • Baidurah, S. (2022). Methods of analyses for biodegradable polymers: A review. Polymers, 14(22), 4928.

    Article  CAS  Google Scholar 

  • Bhandari, N. L., Bhandari, G., Bista, S., Pokhrel, B., Bist, K., & Dhakal, K. N. (2021). Degradation of fundamental polymers/plastics used in daily life: A review. Bibechana, 18(1), 240–253.

    Article  Google Scholar 

  • Cafiero, L., Fabbri, D., Trinca, E., Tuffi, R., & Vecchio Ciprioti, S. (2015). Thermal and spectroscopic (TG/DSC–FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions. Journal of Thermal Analysis and Calorimetry, 121, 1111–1119.

    Article  CAS  Google Scholar 

  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511.

    Article  CAS  Google Scholar 

  • Chatterjee, A. K. (2000). X-ray diffraction. In Handbook of analytical techniques in concrete science and technology (pp. 275–332).

    Google Scholar 

  • Das, P., & Tiwari, P. (2017). Thermal degradation kinetics of plastics and model selection. Thermochimica Acta, 654, 191–202.

    Article  CAS  Google Scholar 

  • Delacuvellerie, A., Benali, S., Cyriaque, V., Moins, S., Raquez, J.-M., Gobert, S., & Wattiez, R. (2021). Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. Journal of Hazardous Materials, 419, 126526.

    Article  CAS  Google Scholar 

  • DeLiberto, A. N., Drown, M. K., Oleksiak, M. F., & Crawford, D. L. (2020). Measuring complex phenotypes: A flexible high-throughput design for micro-respirometry. BioRxiv, 2003–2020.

    Google Scholar 

  • Din, M. I., Ghaffar, T., Najeeb, J., Hussain, Z., Khalid, R., & Zahid, H. (2020). Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Additives & Contaminants: Part A, 37(4), 665–680.

    Article  CAS  Google Scholar 

  • Dussud, C., Meistertzheim, A. L., Conan, P., Pujo-Pay, M., George, M., Fabre, P., Coudane, J., Higgs, P., Elineau, A., Pedrotti, M. L., Gorsky, G., & Ghiglione, J. F. (2018). Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environmental Pollution, 236, 807–816. https://doi.org/10.1016/J.ENVPOL.2017.12.027

    Article  CAS  Google Scholar 

  • Eimontas, J., Striūgas, N., Abdelnaby, M. A., & Yousef, S. (2021). Catalytic pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallized food packaging plastics with different concentrations of ZSM-5 zeolite catalyst. Polymers, 13(5), 702.

    Article  CAS  Google Scholar 

  • Escalante, J., Chen, W.-H., Tabatabaei, M., Hoang, A. T., Kwon, E. E., Lin, K.-Y. A., & Saravanakumar, A. (2022). Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews, 169, 112914.

    Article  CAS  Google Scholar 

  • Farah, J. S., Silva, M. C., Cruz, A. G., & Calado, V. (2018). Differential calorimetry scanning: Current background and application in authenticity of dairy products. Current Opinion in Food Science, 22, 88–94.

    Article  Google Scholar 

  • Finzi-Quintão, C. M., Novack, K. M., & Bernardes-Silva, A. C. (2016). Identification of biodegradable and oxo-biodegradable plastic bags samples composition. Macromolecular Symposia, 367(1), 9–17.

    Article  Google Scholar 

  • Freire, E. (1995). Differential scanning calorimetry. In Protein stability and folding: Theory and practice (pp. 191–218). Springer.

    Chapter  Google Scholar 

  • Fu, W., Min, J., Jiang, W., Li, Y., & Zhang, W. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science of the Total Environment, 721, 137561. https://doi.org/10.1016/J.SCITOTENV.2020.137561

    Article  CAS  Google Scholar 

  • Gao, R., Liu, R., & Sun, C. (2022). A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. Journal of Hazardous Materials, 431, 128617.

    Article  CAS  Google Scholar 

  • Georgakopoulou, M., Hein, A., Müller, N. S., & Kiriatzi, E. (2017). Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics. X-Ray Spectrometry, 46(3), 186–199.

    Article  CAS  Google Scholar 

  • Gwinnett, C. M. B., Osborne, A. O., & Jackson, A. R. W. (2021). The application of tape lifting for microplastic pollution monitoring. Environmental Advances, 5, 100066. https://doi.org/10.1016/J.ENVADV.2021.100066

    Article  CAS  Google Scholar 

  • James, T. L. (1998). Fundamentals of NMR (Online Textbook) (pp. 1–31). Department of Pharmaceutical Chemistry, University of California.

    Google Scholar 

  • Jung, S., Cho, S.-H., Kim, K.-H., & Kwon, E. E. (2021). Progress in quantitative analysis of microplastics in the environment: A review. Chemical Engineering Journal, 422, 130154.

    Article  CAS  Google Scholar 

  • Kalaronis, D., Ainali, N. M., Evgenidou, E., Kyzas, G. Z., Yang, X., Bikiaris, D. N., & Lambropoulou, D. A. (2022). Microscopic techniques as means for the determination of microplastics and nanoplastics in the aquatic environment: A concise review. Green Analytical Chemistry, 3, 100036. https://doi.org/10.1016/J.GREEAC.2022.100036

    Article  Google Scholar 

  • Khan, S., Ali, S. A., & Ali, A. S. (2023). Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’ isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 44(15), 2300–2314.

    Article  CAS  Google Scholar 

  • Kim, D. I. (2023). Metabolic rates of Japanese anchovy (Engraulis japonicus) during early development using a novel modified respirometry method. Animals, 13(6), 1035.

    Article  Google Scholar 

  • King, E. F., & Dutka, B. J. (2019). Respirometric techniques. In Toxicity testing using microorganisms (pp. 75–113). CRC Press.

    Chapter  Google Scholar 

  • Kök, M. V., Varfolomeev, M. A., & Nurgaliev, D. K. (2017). Crude oil characterization using tga-dta, tga-ftir and tga-ms techniques. Journal of Petroleum Science and Engineering, 154, 537–542.

    Article  Google Scholar 

  • Kumari, A., Chaudhary, D. R., & Jha, B. (2019). Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environmental Science and Pollution Research, 26, 1507–1516. https://doi.org/10.1007/S11356-018-3465-1

    Article  CAS  Google Scholar 

  • Labbe, A. B., Bagshaw, C. R., & Uttal, L. (2020). Inexpensive adaptations of basic microscopes for the identification of microplastic contamination using polarization and Nile red fluorescence detection. Journal of Chemical Education, 97(11), 4026–4032. https://doi.org/10.1021/ACS.JCHEMED.0C00518

    Article  CAS  Google Scholar 

  • Lin, H., Bean, S. R., Tilley, M., Peiris, K. H. S., & Brabec, D. (2021). Qualitative and quantitative analysis of sorghum grain composition including protein and tannins using ATR-FTIR spectroscopy. Food Analytical Methods, 14, 268–279.

    Article  Google Scholar 

  • Loganathan, S., Valapa, R. B., Mishra, R. K., Pugazhenthi, G., & Thomas, S. (2017). Thermogravimetric analysis for characterization of nanomaterials. In Thermal and rheological measurement techniques for nanomaterials characterization (pp. 67–108). Elsevier.

    Chapter  Google Scholar 

  • Lv, L., Qu, J., Yu, Z., Chen, D., Zhou, C., Hong, P., Sun, S., & Li, C. (2019). A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Environmental Pollution, 255, 113283. https://doi.org/10.1016/J.ENVPOL.2019.113283

    Article  CAS  Google Scholar 

  • Macfarlane, D. J. (2017). Open-circuit respirometry: A historical review of portable gas analysis systems. European Journal of Applied Physiology, 117(12), 2369–2386.

    Article  CAS  Google Scholar 

  • Mainardis, M., Buttazzoni, M., Cottes, M., Moretti, A., & Goi, D. (2021). Respirometry tests in wastewater treatment: Why and how? A critical review. Science of the Total Environment, 793, 148607.

    Article  CAS  Google Scholar 

  • Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M., & Dini, L. (2021). Micro and nanoplastics identification: Classic methods and innovative detection techniques. Frontiers in Toxicology, 3, 636640. https://doi.org/10.3389/FTOX.2021.636640

    Article  Google Scholar 

  • Matjašič, T., Simčič, T., Medvešček, N., Bajt, O., Dreo, T., & Mori, N. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752, 141959.

    Article  Google Scholar 

  • Melo-Agustín, P., Kozak, E. R., de Jesús Perea-Flores, M., & Mendoza-Pérez, J. A. (2022). Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques. Science of the Total Environment, 828, 154434. https://doi.org/10.1016/J.SCITOTENV.2022.154434

    Article  Google Scholar 

  • Menczel, J. D., Andre, R., Kohl, W. S., Krongauz, V. V., Lőrinczy, D., Reading, M., & Grebowicz, J. (2023). Fundamentals of DSC. In The handbook of differential scanning calorimetry (pp. 1–189). Elsevier.

    Google Scholar 

  • Moon, Y., Hwang, R. Y., Park, S., & Han, O. H. (2023). 1H NMR spectroscopy of degraded perfluorosulfonic acid membranes: A simple methodology for detecting onset of degradation. Journal of Electroanalytical Chemistry, 932, 117268.

    Article  CAS  Google Scholar 

  • Niaounakis, M., Kontou, E., Pispas, S., Kafetzi, M., & Giaouzi, D. (2019). Aging of packaging films in the marine environment. Polymer Engineering & Science, 59(s2), E432–E441.

    CAS  Google Scholar 

  • Nikafshar, S., & Nejad, M. (2022). Evaluating efficacy of different UV-stabilizers/absorbers in reducing UV-degradation of lignin. Holzforschung, 76(3), 235–244.

    Article  CAS  Google Scholar 

  • Nowack, J., Dill, V., & Dausmann, K. H. (2020). Open-flow respirometry under field conditions: How does the airflow through the nest influence our results? Journal of Thermal Biology, 92, 102667.

    Article  CAS  Google Scholar 

  • Osman, M., Satti, S. M., Luqman, A., Hasan, F., Shah, Z., & Shah, A. A. (2018). Degradation of polyester polyurethane by aspergillus sp. strain S45 isolated from soil. Journal of Polymers and the Environment, 26, 301–310.

    Article  CAS  Google Scholar 

  • Patel, H., Kerndt, C. C., & Bhardwaj, A. (2018). Physiology, respiratory quotient. StatPearls Publishing.

    Google Scholar 

  • Patnaik, S., Kumar, S., & Panda, A. K. (2020). Thermal degradation of eco-friendly alternative plastics: Kinetics and thermodynamics analysis. Environmental Science and Pollution Research, 27(13), 14991–15000.

    Article  CAS  Google Scholar 

  • Russ, J. C. (2013). Fundamentals of energy dispersive X-ray analysis: Butterworths monographs in materials. Butterworth-Heinemann.

    Google Scholar 

  • Saadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Patience, G. S., & Chaouki, J. (2020). Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. The Canadian Journal of Chemical Engineering, 98(1), 34–43.

    Article  CAS  Google Scholar 

  • Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27, 1–8.

    Article  Google Scholar 

  • Shackley, M. S. (2011). An introduction to X-ray fluorescence (XRF) analysis in archaeology. In X-ray fluorescence spectrometry (XRF) in geoarchaeology (pp. 7–44). Springer.

    Chapter  Google Scholar 

  • Simonescu, C. M. (2012). Application of FTIR spectroscopy in environmental studies. Advanced Aspects of Spectroscopy, 29(1), 77–86.

    Google Scholar 

  • Singh, S., Kumar, V., Singla, S., Sharma, M., Singh, D. P., Prasad, R., Thakur, V. K., & Singh, J. (2020). Kinetic study of the biodegradation of acephate by indigenous soil bacterial isolates in the presence of humic acid and metal ions. Biomolecules, 10(3), 433.

    Article  CAS  Google Scholar 

  • Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., English, M. E., Bandopadhyay, S., Schaeffer, S. M., DeBruyn, J. M., & Miles, C. A. (2020). In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Science of the Total Environment, 727, 138668.

    Article  CAS  Google Scholar 

  • Smith, B. C. (2011). Fundamentals of Fourier transform infrared spectroscopy. CRC Press.

    Book  Google Scholar 

  • Strebl, M. G., Bruns, M. P., & Virtanen, S. (2023). Respirometric in situ methods for real-time monitoring of corrosion rates: Part III. Deconvolution of electrochemical polarization curves. Journal of the Electrochemical Society, 170(6), 61503.

    Article  CAS  Google Scholar 

  • Šudomová, L., Doležalová Weissmannová, H., Steinmetz, Z., Řezáčová, V., & Kučerík, J. (2023). A differential scanning calorimetry (DSC) approach for assessing the quality of polyethylene terephthalate (PET) waste for physical recycling: A proof-of-concept study. Journal of Thermal Analysis and Calorimetry, 148, 1–13.

    Article  Google Scholar 

  • Turner, A. (2016). Heavy metals, metalloids and other hazardous elements in marine plastic litter. Marine Pollution Bulletin, 111(1–2), 136–142.

    Article  CAS  Google Scholar 

  • Vogel, K., Wei, R., Pfaff, L., Breite, D., Al-Fathi, H., Ortmann, C., Estrela-Lopis, I., Venus, T., Schulze, A., & Harms, H. (2021). Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. Science of the Total Environment, 773, 145111.

    Article  CAS  Google Scholar 

  • Wagner, M. (2017). Thermal analysis in practice: Fundamental aspects. Carl Hanser Verlag GmbH Co KG.

    Book  Google Scholar 

  • Wang, L., Zhang, J., Hou, S., & Sun, H. (2017). A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry. Environmental Science and Technology Letters, 4(12), 530–534. https://doi.org/10.1021/ACS.ESTLETT.7B00454

    Article  CAS  Google Scholar 

  • Xu, W., Li, S., Whitely, N., & Pan, W.-P. (2005). Fundamentals of TGA and SDT.

    Google Scholar 

  • Xu, J.-L., Thomas, K. V., Luo, Z., & Gowen, A. A. (2019). FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends in Analytical Chemistry, 119, 115629.

    Article  CAS  Google Scholar 

  • Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K. H., Wu, C., & Lam, P. K. S. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilasó-Cadre, J.E., González-Fernández, L.A., Medellín-Castillo, N.A., Reyes-Domínguez, I.A. (2024). Diversified Analytical Methods Used to Analyze Plastic Biodegradation. In: Soni, R., Debbarma, P., Suyal, D.C., Goel, R. (eds) Advanced Strategies for Biodegradation of Plastic Polymers. Springer, Cham. https://doi.org/10.1007/978-3-031-55661-6_7

Download citation

Publish with us

Policies and ethics

Navigation