Biodegradation of Polyurethane (PU) and Polyvinyl Chloride (PVC)

  • Chapter
  • First Online:
Advanced Strategies for Biodegradation of Plastic Polymers

Abstract

The accumulation of plastic trash has been recognized as a significant environmental issue that impacts all forms of life, natural ecosystems, and the global economy. In these circumstances, it is crucial to prioritize the search for environmentally friendly alternatives, such as biodegradation instead of conventional disposal methods. Currently, there is limited knowledge regarding the mechanisms and effectiveness of plastic biodegradation. The purpose of this study is to provide a concise overview of the biodegradation processes of polyurethane (PU) and polyvinyl chloride (PVC), highlighting their significance in terms of environmental sustainability and waste management. Biodegradation, which harnesses the power of microbes and enzymes, holds immense promise in tackling the environmental issues associated with synthetic polymers. Biodegradation refers to the natural process by which microbes and enzymes break down organic matter. To effectively develop strategies for managing plastic waste and promoting sustainability, it is essential to have a thorough understanding of the mechanisms and factors that affect the biodegradation of polyurethane (PU) and polyvinyl chloride (PVC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akutsu-Shigeno, Y., Adachi, Y., Yamada, C., Toyoshima, K., Nomura, N., Uchiyama, H., & Nakajima-Kambe, T. (2006). Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Applied Microbiology and Biotechnology, 70, 422–429.

    Article  CAS  Google Scholar 

  • Ali, S. S., & Sun, J. (2015). Physico-chemical pretreatment and fungal biotreatment for park wastes and cattle dung for biogas production. SpringerPlus, 4, 1–14.

    Article  CAS  Google Scholar 

  • Ali, M. I., Ahmed, S., Robson, G., Javed, I., Ali, N., Atiq, N., & Hameed, A. (2014). Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 54(1), 18–27.

    Article  CAS  Google Scholar 

  • Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A., et al. (2021a). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 771, 144719.

    Article  CAS  Google Scholar 

  • Ali, S. S., Al-Tohamy, R., Koutra, E., El-Naggar, A. H., Kornaros, M., & Sun, J. (2021b). Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. Journal of Hazardous Materials, 403, 123575.

    Article  CAS  Google Scholar 

  • Alshehrei, F. (2017). Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied & Environmental Microbiology, 5(1), 8–19.

    CAS  Google Scholar 

  • Anwar, M., Negi, H., Zaidi, M., Haider, G., Gupta, S., & Goel, R. (2013). Biodeterioration studies of thermoplastics in nature using indigenous bacterial consortium. Brazilian Archives of Biology and Technology, 56, 475–484.

    Article  CAS  Google Scholar 

  • Apitius, L., Rübsam, K., Jakesch, C., Jakob, F., & Schwaneberg, U. (2019). Ultrahigh-throughput screening system for directed polymer binding peptide evolution. Biotechnology and Bioengineering, 116(8), 1856–1867.

    Article  CAS  Google Scholar 

  • Artigas Alejo, J. (2008). The role of fungi and bacteria on the organic matter decomposition process in streams: Interaction and relevance in biofilms. Universitat de Girona.

    Google Scholar 

  • Begum, M. A., Varalakshmi, B., & Umamagheswari, K. (2015). Biodegradation of polythene bag using bacteria isolated from soil. International Journal of Current Microbiology and Applied Sciences, 4(11), 674–680.

    CAS  Google Scholar 

  • Borchert, E., Hammerschmidt, K., Hentschel, U., & Deines, P. (2021). Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends in Microbiology, 29(10), 908–918.

    Article  CAS  Google Scholar 

  • Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.

    Article  Google Scholar 

  • Bueno-Ferrer, C., Garrigós, M. C., & Jiménez, A. (2010). Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polymer Degradation and Stability, 95(11), 2207–2212.

    Article  CAS  Google Scholar 

  • Cangemi, J. M., Santos, A. M. D., Neto, S. C., & Chierice, G. O. (2008). Biodegradation of polyurethane derived from castor oil. Polímeros, 18, 201–206.

    Article  CAS  Google Scholar 

  • Coe, J. M., Andersson, S., & Rogers, D. B. (1997). Marine debris in the Caribbean region. In Marine debris: Sources, impacts, and solutions (pp. 25–33). Springer New York.

    Chapter  Google Scholar 

  • Cregut, M., Bedas, M., Durand, M., & Thouand, G. (2013). New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnology Advances, 31(8), 1634–1647.

    Article  CAS  Google Scholar 

  • Darby, R. T., & Kaplan, A. M. (1968). Fungal susceptibility of polyurethanes. Applied Microbiology, 16(6), 900–905.

    Article  CAS  Google Scholar 

  • Dedisch, S., Wiens, A., Davari, M. D., Söder, D., Rodriguez-Emmenegger, C., Jakob, F., & Schwaneberg, U. (2020). Matter-tag: A universal immobilization platform for enzymes on polymers, metals, and silicon-based materials. Biotechnology and Bioengineering, 117(1), 49–61.

    Article  CAS  Google Scholar 

  • Denuncio, P., Bastida, R., Dassis, M., Giardino, G., Gerpe, M., & Rodríguez, D. (2011). Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), from Argentina. Marine Pollution Bulletin, 62(8), 1836–1841.

    Article  CAS  Google Scholar 

  • Dutta, S., Karak, N., Saikia, J. P., & Konwar, B. K. (2010). Biodegradation of epoxy and MF modified polyurethane films derived from a sustainable resource. Journal of Polymers and the Environment, 18, 167–176.

    Article  CAS  Google Scholar 

  • Espinosa, M. J. C., Blanco, A. C., Schmidgall, T., Atanasoff-Kardjalieff, A. K., Kappelmeyer, U., Tischler, D., & Eberlein, C. (2020). Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Frontiers in Microbiology, 11, 404.

    Article  Google Scholar 

  • Filip, Z. (1978). Decomposition of polyurethane in a garbage landfill leakage water and by soil microorganisms. European Journal of Applied Microbiology and Biotechnology, 5, 225–231.

    Article  CAS  Google Scholar 

  • Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., Rizzarelli, P., & Camino, G. (2010). Biodegradation trend of poly (ε-caprolactone) and nanocomposites. Materials Science and Engineering: C, 30(4), 566–574.

    Article  CAS  Google Scholar 

  • Gangola, S., Joshi, S., Kumar, S., & Pandey, S. C. (2019). Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic compounds. In Smart bioremediation technologies (pp. 169–189). Academic Press.

    Chapter  Google Scholar 

  • Glas, D., Hulsbosch, J., Dubois, P., Binnemans, K., & De Vos, D. (2014). End-of-life treatment of poly(vinyl chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids. ChemSusChem, 7(2), 610–617.

    Article  CAS  Google Scholar 

  • Howard, G. T., Norton, W. N., & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation, 23, 561–573.

    Article  CAS  Google Scholar 

  • Huang, S. J., & Roby, M. S. (1986). Biodegradable polymers poly(amide-urethanes) [1]. Journal of Bioactive and Compatible Polymers, 1(1), 61–71.

    Article  CAS  Google Scholar 

  • Iannace, S., Nocilla, G., & Nicolais, L. (1999). Biocomposites based on sea algae fibers and biodegradable thermoplastic matrices. Journal of Applied Polymer Science, 73(4), 583–592.

    Article  CAS  Google Scholar 

  • Ibrahim, I. N., Maraqa, A., Hameed, K. M., Saadoun, I. M., & Maswadeh, H. M. (2011). Assessment of potential plastic-degrading fungi in Jordanian habitats. Turkish Journal of Biology, 35(5), 551–557.

    Google Scholar 

  • Ishigaki, T., Sugano, W., Nakanishi, A., Tateda, M., Ike, M., & Fujita, M. (2004). The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere, 54(3), 225–233.

    Article  CAS  Google Scholar 

  • Islam, S., Apitius, L., Jakob, F., & Schwaneberg, U. (2019). Targeting microplastic particles in the void of diluted suspensions. Environment International, 123, 428–435.

    Article  CAS  Google Scholar 

  • Karimi, M., & Biria, D. (2019). The promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blend. Scientific Reports, 9(1), 2612.

    Article  CAS  Google Scholar 

  • Kay, M. J., Morton, L. H. G., & Prince, E. L. (1991). Bacterial degradation of polyester polyurethane. International Biodeterioration, 27(2), 205–222.

    Article  CAS  Google Scholar 

  • Khan, S., Nadir, S., Shah, Z. U., Shah, A. A., Karunarathna, S. C., Xu, J., et al. (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 225, 469–480.

    Article  CAS  Google Scholar 

  • Kim, J. H., Choi, S. H., Park, M. G., Park, D. H., Son, K. H., & Park, H. Y. (2022). Biodegradation of polyurethane by Japanese carpenter bee gut-associated symbionts Xanthomonas sp. HY-71, and its potential application on bioconversion. Environmental Technology & Innovation, 28, 102822.

    Article  CAS  Google Scholar 

  • Koller, M., & Braunegg, G. (2018). Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. The EuroBiotech Journal, 2(2), 89–103.

    Article  Google Scholar 

  • Kumar, V., Mitra, D., Rani, A., Suyal, D. C., Gautam, B. P. S., Jain, L., & Soni, R. (2022). Bio-inoculants for biodegradation and bioconversion of agrowaste: Status and prospects (pp. 351–367). Emerging Trends and Strategies.

    Google Scholar 

  • Liu, J., He, J., Xue, R., Xu, B., Qian, X., **n, F., Blank, L. M., Zhou, J., Wei, R., Dong, W., & Jiang, M. (2021). Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnology Advances, 48, 107730.

    Article  CAS  Google Scholar 

  • Liu, J., Zeng, Q., Lei, H., **n, K., Xu, A., Wei, R., Li, D., Zhou, J., Dong, W., & Jiang, M. (2023). Biodegradation of polyester polyurethane by Cladosporium sp. P7: Evaluating its degradation capacity and metabolic pathways. Journal of Hazardous Materials, 448, 130776.

    Article  CAS  Google Scholar 

  • Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709.

    Article  Google Scholar 

  • Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139.

    Article  CAS  Google Scholar 

  • Nakajima-Kambe, T., Onuma, F., Kimpara, N., & Nakahara, T. (1995). Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, 129(1), 39–42.

    Article  CAS  Google Scholar 

  • Negoro, S. (2000). Biodegradation of nylon oligomers. Applied Microbiology & Biotechnology, 54(4), 461–466.

    Article  CAS  Google Scholar 

  • Nir, M. M., Miltz, J., & Ram, A. (1993). Update on plastics and the environment: Progress and trends. Plastics Engineering (USA), 49(3), 75–93.

    Google Scholar 

  • Oprea, S. (2010). Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polymer Degradation and Stability, 95(12), 2396–2404.

    Article  CAS  Google Scholar 

  • Owen, S., Otani, T., Masaoka, S., & Ohe, T. (1996). The biodegradation of low-molecular-weight urethane compounds by a strain of Exophiala jeanselmei. Bioscience, Biotechnology, and Biochemistry, 60(2), 244–248.

    Article  CAS  Google Scholar 

  • Peng, Y., Shih, Y., Lai, Y., Liu, Y., Liu, Y., & Lin, N. (2014). Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environmental Science and Pollution Research, 21(16), 9529–9537.

    Article  CAS  Google Scholar 

  • Peng, B., Chen, Z., Chen, J., Yu, H., Zhou, X., Criddle, C. S., Wu, W., & Zhang, Y. (2020). Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 145, 106106.

    Article  CAS  Google Scholar 

  • Phua, S. K., Castillo, E., Anderson, J. M., & Hiltner, A. (1987). Biodegradation of a polyurethane in vitro. Journal of Biomedical Materials Research, 21(2), 231–246.

    Article  CAS  Google Scholar 

  • Raghavendra, V. B., Uzma, M., & Govindappa, M. (2016). Screening and identification of polyurethane (PU) and low density polyethylene (LDPE) degrading soil fungi isolated from municipal solid waste. International Journal of Current Research, 8(07), 34753–34761.

    CAS  Google Scholar 

  • Roy, P. K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., & Rajagopal, C. (2008). Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polymer Degradation and Stability, 93(10), 1917–1922.

    Article  CAS  Google Scholar 

  • Ruiz, C., Main, T., Hilliard, N. P., & Howard, G. T. (1999). Purification and characterization of twopolyurethanase enzymes from Pseudomonas chlororaphis. International Biodeterioration & Biodegradation, 43(1–2), 43–47.

    Article  CAS  Google Scholar 

  • Russell, J. R., Huang, J., Anand, P., Kucera, K., Sandoval, A. G., Dantzler, K. W., et al. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, 77(17), 6076–6084.

    Article  CAS  Google Scholar 

  • Sah, A., Negi, H., Kapri, A., Anwar, S., & Goel, R. (2011). Comparative shelf life and efficacy of LDPE and PVC degrading bacterial consortia under bioformulation. Ekologija, 57(2). https://doi.org/10.6001/ekologija.v57i2.1885

  • Sarkar, S., Singha, P. K., Dey, S., Mohanty, M., & Adhikari, B. (2006). Synthesis, characterization, and cytotoxicity analysis of a biodegradable polyurethane. Materials and Manufacturing Processes, 21(3), 291–296.

    Article  CAS  Google Scholar 

  • Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52(6), 3591–3598.

    Article  CAS  Google Scholar 

  • Secchi, E. R., & Zarzur, S. (1999). Plastic debris ingested by a Blainville’s beaked whale, Mesoplodon densirostris, washed ashore in Brazil. Aquatic Mammals, 25(1), 21–24.

    Google Scholar 

  • Shah, Z. A., Gulzar, M., Hasan, F., & Shah, A. A. (2016). Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and Bacillus species isolated from soil. Polymer Degradation and Stability, 134, 349–356.

    Article  CAS  Google Scholar 

  • Shibasaki, S., Kawabata, A., Tanino, T., Kondo, A., Ueda, M., & Tanaka, M. (2009). Evaluation of the biodegradability of polyurethane and its derivatives by using lipase-displaying arming yeast. Biocontrol Science, 14(4), 171–175.

    Article  CAS  Google Scholar 

  • Skariyachan, S., Taskeen, N., Kishore, A. P., & Krishna, B. V. (2022). Recent advances in plastic degradation – From microbial consortia-based methods to data sciences and computational biology driven approaches. Journal of Hazardous Materials, 426, 128086.

    Article  CAS  Google Scholar 

  • Stern, R. V., & Howard, G. T. (2000). The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiology Letters, 185(2), 163–168.

    Article  CAS  Google Scholar 

  • Van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R., & Pettersson, G. (1986). Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: Separation of functional domains. FEBS Letters, 204(2), 223–227.

    Article  Google Scholar 

  • Wang, Z., **n, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Science of the Total Environment, 726, 138564.

    Article  CAS  Google Scholar 

  • Wei, R., Oeser, T., Then, J., Kühn, N., Barth, M., Schmidt, J., & Zimmermann, W. (2014). Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 4, 1–10.

    Article  CAS  Google Scholar 

  • Wei, R., Tiso, T., Bertling, J., O’Connor, K., Blank, L. M., & Bornscheuer, U. T. (2020). Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis, 3(11), 867–871.

    Article  CAS  Google Scholar 

  • Wilcox, C., Van Sebille, E., & Hardesty, B. D. (2015). Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proceedings of the National Academy of Sciences, 112(38), 11899–11904.

    Article  CAS  Google Scholar 

  • Wool, R. P., Raghavan, D., Wagner, G. C., & Billieux, S. (2000). Biodegradation dynamics of polymer–starch composites. Journal of Applied Polymer Science, 77(8), 1643–1657.

    Article  CAS  Google Scholar 

  • Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gondwal, M., Gwasikoti, A., Qureshi, A., Solanki, P.P., Verma, R.K., Gautam, B.P.S. (2024). Biodegradation of Polyurethane (PU) and Polyvinyl Chloride (PVC). In: Soni, R., Debbarma, P., Suyal, D.C., Goel, R. (eds) Advanced Strategies for Biodegradation of Plastic Polymers. Springer, Cham. https://doi.org/10.1007/978-3-031-55661-6_5

Download citation

Publish with us

Policies and ethics

Navigation