Drug Delivery Systems for Intervertebral Disc

  • Chapter
  • First Online:
Drug Delivery Systems for Musculoskeletal Tissues

Abstract

Intervertebral disc (IVD) degeneration is one of the most common degenerative joint diseases that cause pain and disability in adults. It is also a major cause of chronic lower back pain. Early-stage intervention generally focuses on therapies for pain relief while surgical interventions are indicated when non-operative therapies do not achieve a desirable outcome. Since the nature of the disease is localised, nanosystems in drug delivery have a significant potential to improve therapeutic outcomes due to their ability to modify drug retention time or target specific areas due to their smaller size, facilitating penetration and diffusion within the IVD matrix. In addition, different parameters such as material formulation, production techniques, size and surface properties can be augmented to load a wide range of drugs and bioactive. The release profile of therapeutic agents is affected by conditions such as pH, temperature, degradation, drug diffusion and binding interactions. Having prolonged, controlled and targeted releases of bioactive can minimise the number of drug concentrations and injection frequencies at the affected area. This section highlights the drug delivery systems for intervertebral disc application, including nanoparticles, nanofibres, liposomes, dendrimers and micelles, which can optimally carry such bioactivity for enhanced therapeutic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.-G. Peng, “Pathophysiology, Diagnosis, and Treatment of Discogenic Low Back Pain,” World J. Orthop., vol. 4, no. 2, pp. 42–52, 2013, https://doi.org/10.5312/wjo.v4.i2.42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. K. L. Moore, A. F. Dalley I, and A. M. R. Agur, Clinially Oriented Anatomy. 2014.

    Google Scholar 

  3. I. M. Shapiro and M. V. Risbud, “Introduction to the Structure, Function, and Comparative Anatomy of the Vertebrae and the Intervertebral Disc,” in The Intervertebral Disc, 2014, pp. 3–429.

    Google Scholar 

  4. D. Sakai et al., “Exhaustion of Nucleus Pulposus Progenitor Cells with Ageing and Degeneration of the Intervertebral Disc,” Nat. Commun., vol. 3, no. May, p. 1264, 2012, https://doi.org/10.1038/ncomms2226.

    Article  CAS  PubMed  Google Scholar 

  5. P. Bermudez-Lekerika et al., “Immuno-Modulatory Effects of Intervertebral Disc Cells,” Front. Cell Dev. Biol., vol. 10, no. June, pp. 1–32, 2022, https://doi.org/10.3389/fcell.2022.924692.

    Article  Google Scholar 

  6. F. J. Lyu et al., “Painful Intervertebral Disc Degeneration and Inflammation: From Laboratory Evidence to Clinical Interventions,” Bone Res., vol. 9, no. 1, 2021, https://doi.org/10.1038/s41413-020-00125-x.

  7. I. L. Mohd Isa, S. A. Mokhtar, S. A. Abbah, M. B. Fauzi, A. Devitt, and A. Pandit, “Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies Towards Precision Medicine,” Adv. Healthc. Mater., vol. 2102530, 2022, https://doi.org/10.1002/adhm.202102530.

  8. S. Grassel and A. Aszodi, Cartilage Pathophysiology, vol. 2. 2017.

    Google Scholar 

  9. C. Liu, L. **ao, Y. Zhang, Q. Zhao, and H. Xu, “Regeneration of annulus fibrosus tissue using a DAFM/PECUU-blended electrospun scaffold,” J. Biomater. Sci. Polym. Ed., vol. 31, no. 18, pp. 2347–2361, 2020, https://doi.org/10.1080/09205063.2020.1812038.

    Article  CAS  PubMed  Google Scholar 

  10. R. P. Prithvi, “Intervertebral Disc: Anatomy-Physiology-Pathophysiology-Treatment,” Pain Pract., vol. 8, no. 1, pp. 18–44, 2008, https://doi.org/10.1111/j.1533-2500.2007.00171.x.

    Article  Google Scholar 

  11. P. J. Roughley, “Biology of Intervertebral Disc Aging and Degeneration Involvement of the Extracellular Matrix,” Spine (Phila. Pa. 1976)., vol. 29, no. 23, pp. 2691–2699, 2004.

    Article  PubMed  Google Scholar 

  12. J. D. Placzek and D. A. Boyce, Orthopaedic Physical Therapy Secrets – E-Book. 2016.

    Google Scholar 

  13. C. A. Séguin, D. Chan, C. L. Dahia, and Z. Gazit, “Latest Advances in Intervertebral Disc Development and Progenitor Cells,” JOR Spine, vol. 1, no. 3, pp. 1–11, 2018, https://doi.org/10.1002/jsp2.1030.

    Article  Google Scholar 

  14. Y. Wu, J. Loaiza, R. Banerji, O. Blouin, and E. Morgan, “Structure-function relationships of the human vertebral endplate,” JOR Spine, vol. 4, no. 3, pp. 1–13, 2021, https://doi.org/10.1002/jsp2.1170.

    Article  CAS  Google Scholar 

  15. D. R. Eyre and H. Muir, “Quantitative analysis of types I and II collagens in human intervertebral discs at various ages,” BBA – Protein Struct., vol. 492, no. 1, pp. 29–42, 1977, https://doi.org/10.1016/0005-2795(77)90211-2.

    Article  CAS  Google Scholar 

  16. Q. Wei, X. Zhang, C. Zhou, Q. Ren, and Y. Zhang, “Roles of large aggregating proteoglycans in human intervertebral disc degeneration,” Connect. Tissue Res., vol. 60, no. 3, pp. 209–218, 2019, https://doi.org/10.1080/03008207.2018.1499731.

    Article  PubMed  Google Scholar 

  17. J. **n, Y. Wang, Z. Zheng, S. Wang, S. Na, and S. Zhang, “Treatment of Intervertebral Disc Degeneration,” Orthop. Surg., vol. 14, no. 7, pp. 1271–1280, 2022, https://doi.org/10.1111/os.13254.

    Article  PubMed  PubMed Central  Google Scholar 

  18. S. Elmasry, S. Asfour, J. Pablo, D. R. Vaccari, and F. Travascio, “Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc : A Finite Element Study,” pp. 1–22, 2015, https://doi.org/10.1371/journal.pone.0136137.

  19. C. L. Le Maitre, A. J. Freemont, and J. A. Hoyland, “Accelerated Cellular Senescence in Degenerate Intervertebral Discs: A Possible Role in the Pathogenesis of Intervertebral Disc Degeneration,” Arthritis Res. Ther., vol. 9, no. 3, pp. 1–12, 2007, https://doi.org/10.1186/ar2198.

    Article  CAS  Google Scholar 

  20. K. Joyce, I. L. Mohd Isa, A. Krouwels, L. B. Creemers, A. Devitt, and A. Pandit, “The Role of Altered Glycosylation in Human Nucleus Pulposus Cells in Inflammation and Degeneration,” Eur. Cells Mater., vol. 40, pp. 401–420, 2021, https://doi.org/10.22203/eCM.v041a26.

  21. H. Morris, C. F. Gonçalves, M. Dudek, J. Hoyland, and Q. J. Meng, “Tissue Physiology Revolving Around the Clock: Circadian Rhythms as Exemplified by the Intervertebral Disc,” Ann. Rheum. Dis., vol. 80, no. 7, pp. 828–839, 2021, https://doi.org/10.1136/annrheumdis-2020-219515.

    Article  CAS  PubMed  Google Scholar 

  22. S. E. Navone et al., “Inflammatory Mediators and Signalling Pathways Controlling Intervertebral Disc Degeneration,” Histol. Histopathol., vol. 32, no. 6, pp. 523–542, 2017, https://doi.org/10.14670/HH-11-846.

  23. Y. Wang, M. Che, J. **n, Z. Zheng, J. Li, and S. Zhang, “The Role of IL-1β and TNF-α in Intervertebral Disc Degeneration,” Biomed. Pharmacother., vol. 131, 2020, https://doi.org/10.1016/j.biopha.2020.110660.

  24. X. B. Zhang et al., “Targeted therapy for intervertebral disc degeneration: Inhibiting apoptosis is a promising treatment strategy,” Int. J. Med. Sci., vol. 18, no. 13, pp. 2799–2813, 2021, https://doi.org/10.7150/ijms.59171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Stefanakis et al., “Annulus Fissures are Mechanically and Chemically Conducive to the Ingrowth of Nerves and Blood Vessels,” Spine (Phila. Pa. 1976)., vol. 37, no. 22, pp. 1883–1891, 2012, https://doi.org/10.1097/BRS.0b013e318263ba59.

    Article  PubMed  Google Scholar 

  26. N. Vaudreuil et al., “乳鼠心肌提取 HHS Public Access,” Physiol. Behav., vol. 176, no. 1, pp. 139–148, 2016, https://doi.org/10.1016/j.spinee.2017.04.012.NSAID.

    Article  Google Scholar 

  27. M. E. Hale, C. Dvergsten, and J. Gimbel, “Efficacy and safety of oxymorphone extended release in chronic low back pain: Results of a randomized, double-blind, placebo- and active-controlled phase III study,” J. Pain, vol. 6, no. 1, pp. 21–28, 2005, https://doi.org/10.1016/j.jpain.2004.09.005.

    Article  CAS  PubMed  Google Scholar 

  28. M. W. van Tulder, T. Touray, A. D. Furlan, S. Solway, and L. M. Bouter, “Muscle relaxants for non-specific low-back pain,” Cochrane Database Syst. Rev., vol. 2017, no. 3, 2003, https://doi.org/10.1002/14651858.CD004252.

  29. D. Brötz et al., “Is there a role for benzodiazepines in the management of lumbar disc prolapse with acute sciatica?,” Pain, vol. 149, no. 3, pp. 470–475, 2010, https://doi.org/10.1016/j.pain.2010.02.015.

    Article  CAS  PubMed  Google Scholar 

  30. O. Buyukturan, B. Buyukturan, S. Sas, C. Kararti, and I. Ceylan, “The effect of mulligan mobilization technique in older adults with neck pain: A randomized controlled, double-blind study,” Pain Res. Manag., vol. 2018, 2018, https://doi.org/10.1155/2018/2856375.

  31. F. J. R. França et al., “Motor Control Training Compared with Transcutaneous Electrical Nerve Stimulation in Patients with Disc Herniation with Associated Radiculopathy,” Am. J. Phys. Med. Rehabil., vol. 98, no. 3, pp. 207–214, 2019, https://doi.org/10.1097/PHM.0000000000001048.

    Article  PubMed  Google Scholar 

  32. L. A. V. Ramos et al., “Comparison Between Transcutaneous Electrical Nerve Stimulation and Stabilization Exercises in Fatigue and Transversus Abdominis Activation in Patients With Lumbar Disk Herniation: A Randomized Study,” J. Manipulative Physiol. Ther., vol. 41, no. 4, pp. 323–331, 2018, https://doi.org/10.1016/j.jmpt.2017.10.010.

    Article  PubMed  Google Scholar 

  33. F. Taher et al., “Lumbar degenerative disc disease: current and future concepts of diagnosis and management,” Adv. Orthop., vol. 2012, p. 970752, Jan. 2012, https://doi.org/10.1155/2012/970752.

  34. O. Rabau et al., “Lateral Lumbar Interbody Fusion (LLIF): An Update,” Glob. Spine J., vol. 10, no. 2_suppl, pp. 17S–21S, 2020, https://doi.org/10.1177/2192568220910707.

    Article  Google Scholar 

  35. S. B. G. Blanquer, D. W. Grijpma, and A. A. Poot, “Delivery Systems for the Treatment of Degenerated Intervertebral Discs,” Adv. Drug Deliv. Rev., vol. 84, pp. 172–187, 2015, https://doi.org/10.1016/j.addr.2014.10.024.

    Article  CAS  PubMed  Google Scholar 

  36. E. J. Roh et al., “Genetic Therapy for Intervertebral Disc Degeneration,” International Journal of Molecular Sciences, vol. 22, no. 4. pp. 1–14, 2021, https://doi.org/10.3390/ijms22041579.

    Article  CAS  Google Scholar 

  37. W. J. Sandborn, “New targets for small molecules in inflammatory bowel disease,” Gastroenterol. Hepatol., vol. 11, no. 5, pp. 338–340, 2015.

    Google Scholar 

  38. M. Hojjat-Farsangi, “Small-molecule inhibitors of the receptor tyrosine kinases: Promising tools for targeted cancer therapies,” Int. J. Mol. Sci., vol. 15, no. 8, pp. 13768–13801, 2014, https://doi.org/10.3390/ijms150813768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Molinos, C. R. Almeida, J. Caldeira, C. Cunha, R. M. Gonçalves, and M. A. Barbosa, “Inflammation in intervertebral disc degeneration and regeneration,” J. R. Soc. Interface, vol. 12, no. 104, 2015, https://doi.org/10.1098/rsif.2014.1191.

  40. Z. Pan et al., “Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration,” Biomaterials, vol. 160, pp. 56–68, 2018, https://doi.org/10.1016/J.BIOMATERIALS.2018.01.016.

    Article  CAS  PubMed  Google Scholar 

  41. J. A. Efe and S. Ding, “The evolving biology of small molecules: Controlling cell fate and identity,” Philos. Trans. R. Soc. B Biol. Sci., vol. 366, no. 1575, pp. 2208–2221, 2011, https://doi.org/10.1098/rstb.2011.0006.

    Article  CAS  Google Scholar 

  42. L. Cao, X. Chen, X. **ao, Q. Ma, and W. Li, “Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways,” Int. J. Oncol., vol. 49, no. 2, pp. 735–743, 2016, https://doi.org/10.3892/ijo.2016.3559.

    Article  CAS  PubMed  Google Scholar 

  43. W. Hua et al., “Icariin Attenuates Interleukin-1β-Induced Inflammatory Response in Human Nucleus Pulposus Cells,” Curr. Pharm. Des., vol. 23, no. 39, pp. 6071–6078, 2017, https://doi.org/10.2174/1381612823666170615112158.

    Article  CAS  Google Scholar 

  44. J. Zhu et al., “Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs,” Int. Immunopharmacol., vol. 43, pp. 236–242, 2017, https://doi.org/10.1016/j.intimp.2016.12.020.

    Article  CAS  PubMed  Google Scholar 

  45. L. Lu et al., “Berberine prevents human nucleus pulposus cells from IL-1β-induced extracellular matrix degradation and apoptosis by inhibiting the NF-κB pathway,” Int. J. Mol. Med., vol. 43, no. 4, pp. 1679–1686, 2019, https://doi.org/10.3892/ijmm.2019.4105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Liu et al., “Urolithin a inhibits the catabolic effect of TNFα on nucleus pulposus cell and alleviates intervertebral disc degeneration in vivo,” Front. Pharmacol., vol. 9, no. SEP, pp. 1–11, 2018, https://doi.org/10.3389/fphar.2018.01043.

    Article  CAS  Google Scholar 

  47. H. Li, C. Liang, Q. Chen, and Z. Yang, “Rhein: A potential biological therapeutic drug for intervertebral disc degeneration,” Med. Hypotheses, vol. 77, no. 6, pp. 1105–1107, 2011, https://doi.org/10.1016/j.mehy.2011.09.013.

    Article  CAS  PubMed  Google Scholar 

  48. K. Masuda, T. R. Oegema, and H. S. An, “Growth factors and treatment of intervertebral disc degeneration.,” Spine (Phila. Pa. 1976)., vol. 29, no. 23, pp. 2757–69, Dec. 2004, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15564925.

  49. S. T. Yoon, “Molecular therapy of the intervertebral disc,” Spine J., vol. 5, no. 6 SUPPL., pp. S280–S286, 2005, https://doi.org/10.1016/j.spinee.2005.02.017.

    Article  Google Scholar 

  50. C. J. Wallach et al., “Gene transfer of the catabolic inhibitor TIMP-1 increases mesured proteoglycans in cells from degenerated human intervertebral discs,” Spine (Phila. Pa. 1976)., vol. 28, no. 20, pp. 2331–2337, 2003, https://doi.org/10.1097/01.BRS.0000085303.67942.94.

    Article  PubMed  Google Scholar 

  51. Y. Zhang, H. S. An, E. J. M. A. Thonar, S. Chubinskaya, T. C. He, and F. M. Phillips, “Comparative effects of bone morphogenetic proteins and Sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells,” Spine (Phila. Pa. 1976)., vol. 31, no. 19, pp. 2173–2179, 2006, https://doi.org/10.1097/01.brs.0000232792.66632.d8.

    Article  PubMed  Google Scholar 

  52. S. T. Yoon et al., “The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro,” Spine (Phila. Pa. 1976)., vol. 28, no. 16, pp. 1773–1780, 2003, https://doi.org/10.1097/01.BRS.0000083204.44190.34.

    Article  Google Scholar 

  53. Y. Zhang, A. Chee, E. J.-M. a Thonar, and H. S. An, “Intervertebral disk repair by protein, gene, or cell injection: a framework for rehabilitation-focused biologics in the spine.,” PM R, vol. 3, no. 6 Suppl 1, pp. S88–94, Jun. 2011, https://doi.org/10.1016/j.pmrj.2011.04.020.

  54. N. E. Lane et al., “Tanezumab for the Treatment of Pain from Osteoarthritis of the Knee,” N. Engl. J. Med., vol. 363, no. 16, pp. 1521–1531, 2010, https://doi.org/10.1056/nejmoa0901510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. R. A. Deyo, S. K. Mirza, and B. I. Martin, “Back pain prevalence and visit rates: Estimates from U.S. national surveys, 2002,” Spine (Phila. Pa. 1976)., vol. 31, no. 23, pp. 2724–2727, 2006, https://doi.org/10.1097/01.brs.0000244618.06877.cd.

    Article  PubMed  Google Scholar 

  56. M. Zorbas, S. Hurst, D. Shelton, M. Evans, D. Finco, and M. Butt, “A multiple-dose toxicity study of tanezumab in cynomolgus monkeys,” Regul. Toxicol. Pharmacol., vol. 59, no. 2, pp. 334–342, 2011, https://doi.org/10.1016/j.yrtph.2010.11.005.

    Article  CAS  PubMed  Google Scholar 

  57. T. J. Schnitzer, N. E. Lane, C. Birbara, M. D. Smith, S. L. Simpson, and M. T. Brown, “Long-term open-label study of tanezumab for moderate to severe osteoarthritic knee pain,” Osteoarthr. Cartil., vol. 19, no. 6, pp. 639–646, 2011, https://doi.org/10.1016/j.joca.2011.01.009.

    Article  CAS  Google Scholar 

  58. C. Birbara et al., “Safety and efficacy of subcutaneous tanezumab in patients with knee or hip osteoarthritis,” J. Pain Res., vol. 11, pp. 151–164, 2018, https://doi.org/10.2147/JPR.S135257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D. Aitken et al., “A randomised double-blind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis – the HUMOR trial,” Osteoarthr. Cartil., vol. 26, no. 7, pp. 880–887, 2018, https://doi.org/10.1016/j.joca.2018.02.899.

    Article  CAS  Google Scholar 

  60. M. V Risbud and I. M. Shapiro, “Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc-content,” Nat Rev Rheumatol., vol. 10, no. 1, pp. 44–56, 2016, https://doi.org/10.1038/nrrheum.2013.160.Role.

    Article  Google Scholar 

  61. S. B. Cohen et al., “A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee,” Arthritis Res. Ther., vol. 13, no. 4, p. R125, 2011, https://doi.org/10.1186/ar3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S. Genevay, S. Stingelin, and C. Gabay, “Efficacy of etanercept in the treatment of acute, severe sciatica: A pilot study,” Ann. Rheum. Dis., vol. 63, no. 9, pp. 1120–1123, 2004, https://doi.org/10.1136/ard.2003.016451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. I. J. Dahabreh, M. Chung, E. M. Balk, W. W. Yu, and P. Mathew, “Annals of Internal Medicine Active Surveillance in Men With Localized Prostate Cancer,” Ann. Intern. Med., 2011.

    Google Scholar 

  64. T. Okoro, S. I. Tafazal, S. Longworth, and P. J. Sell, “Tumor necrosis α-blocking agent (Etanercept): A triple blind randomized controlled trial of its use in treatment of sciatica,” J. Spinal Disord. Tech., vol. 23, no. 1, pp. 74–77, 2010, https://doi.org/10.1097/BSD.0b013e31819afdc4.

    Article  PubMed  Google Scholar 

  65. X. Chevalier et al., “Intraarticular injection of anakinra in osteoarthritis of the knee: A multicenter, randomized, double-blind, placebo-controlled study,” Arthritis Care Res., vol. 61, no. 3, pp. 344–352, 2009, https://doi.org/10.1002/art.24096.

    Article  CAS  Google Scholar 

  66. C. L. Le Maitre, A. Pockert, D. J. Buttle, A. J. Freemont, and J. A. Hoyland, “Matrix synthesis and degradation in human intervertebral disc degeneration.,” Biochem. Soc. Trans., vol. 35, no. Part 4, pp. 652–5, Aug. 2007, https://doi.org/10.1042/BST0350652.

  67. S. T. Yoon and N. M. Patel, “Molecular therapy of the intervertebral disc,” Eur. Spine J., vol. 15, no. SUPPL. 3, 2006, https://doi.org/10.1007/s00586-006-0155-3.

  68. K. Masuda, “Biological repair of the degenerated intervertebral disc by the injection of growth factors,” Eur. Spine J., vol. 17, no. SUPPL. 4, 2008, https://doi.org/10.1007/s00586-008-0749-z.

  69. A. J. Michalek, M. R. Buckley, L. J. Bonassar, I. Cohen, and J. C. Iatridis, “The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus,” Spine J., vol. 10, no. 12, pp. 1098–1105, 2010, https://doi.org/10.1016/j.spinee.2010.09.015.

    Article  PubMed  PubMed Central  Google Scholar 

  70. J. D. Kang, “Does a needle puncture into the annulus fibrosus cause disc degeneration?,” Spine J., vol. 10, no. 12, pp. 1106–1107, 2010, https://doi.org/10.1016/j.spinee.2010.10.014.

    Article  PubMed  Google Scholar 

  71. A. R. Poynton and J. M. Lane, “Safety profile for the clinical use of bone morphogenetic proteins in the spine,” Spine (Phila. Pa. 1976)., vol. 27, no. 16 SUPPL., pp. 40–48, 2002, https://doi.org/10.1097/00007632-200208151-00010.

    Article  Google Scholar 

  72. T. Jayakumar and P. S. Bhavan, “Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases,” 2020.

    Google Scholar 

  73. C. L. Le Maitre, A. J. Freemont, and J. A. Hoyland, “Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc,” J. Pathol., vol. 204, no. 1, pp. 47–54, 2004, https://doi.org/10.1002/path.1608.

    Article  CAS  PubMed  Google Scholar 

  74. S. Guo et al., “The Mechanisms and Functions of GDF-5 in Intervertebral Disc Degeneration,” Orthop. Surg., vol. 13, no. 3, pp. 734–741, 2021, https://doi.org/10.1111/os.12942.

    Article  PubMed  PubMed Central  Google Scholar 

  75. N. V. Vo, R. A. Hartman, T. Yurube, L. J. Jacobs, G. A. Sowa, and J. D. Kang, “Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration,” Spine J., vol. 13, no. 3, pp. 331–341, 2013, https://doi.org/10.1016/j.spinee.2012.02.027.

    Article  PubMed  PubMed Central  Google Scholar 

  76. W. J. Wang et al., “MMPs and ADAMTSs in intervertebral disc degeneration,” Clin. Chim. Acta, vol. 448, pp. 238–246, 2015, https://doi.org/10.1016/j.cca.2015.06.023.

    Article  CAS  PubMed  Google Scholar 

  77. T. Cawston et al., “The regulation of MMPs and TIMPs in cartilage turnover,” Ann. N. Y. Acad. Sci., vol. 878, pp. 120–129, 1999, https://doi.org/10.1111/j.1749-6632.1999.tb07678.x.

    Article  CAS  PubMed  Google Scholar 

  78. J. Feng Zhang, G. Liang Wang, Z. Jie Zhou, X. Qian Fang, S. Chen, and S. Wu Fan, “Expression of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Interleukins in Vertebral Cartilage Endplate,” Orthop. Surg., vol. 10, no. 4, pp. 306–311, 2018, https://doi.org/10.1111/os.12409.

    Article  Google Scholar 

  79. C. Evans, “Potential biologic therapies for the intervertebral disc,” J. Bone Jt. Surg., vol. 88, no. SUPPL. 2, pp. 95–98, 2006, https://doi.org/10.2106/JBJS.E.01328.

    Article  Google Scholar 

  80. K. Nishida et al., “Gene therapy approach for disc degeneration and associated spinal disorders,” Eur. Spine J., vol. 17, no. SUPPL. 4, pp. 459–466, 2008, https://doi.org/10.1007/s00586-008-0751-5.

    Article  PubMed  PubMed Central  Google Scholar 

  81. P. Wehling, K.-P. Schulitz, P. D. Robbins, C. H. Evans, and J. A. Reinecke, “00007632-199705150-00008.pdf.” 1997.

    Google Scholar 

  82. P. Sampara, R. R. Banala, S. K. Vemuri, G. R. Av, and S. Gpv, “Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: A review,” Gene Ther., vol. 25, no. 2, pp. 67–82, 2018, https://doi.org/10.1038/s41434-018-0004-0.

    Article  CAS  PubMed  Google Scholar 

  83. L. M. Benneker et al., “Cell therapy for intervertebral disc repair: Advancing cell therapy from bench to clinics,” Eur. Cells Mater., vol. 27, no. SUPPL, pp. 5–11, 2014, https://doi.org/10.22203/eCM.v027sa02.

  84. I. B. Han, “Moving forward: Gene therapy for intervertebral disc degeneration,” Neurospine, vol. 17, no. 1, pp. 17–18, 2020, https://doi.org/10.14245/ns.2040108.054.

  85. H. B. Henriksson et al., “Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model,” Spine (Phila. Pa. 1976)., vol. 34, no. 2, pp. 141–148, 2009, https://doi.org/10.1097/BRS.0b013e31818f8c20.

    Article  PubMed  Google Scholar 

  86. T. Ganey, W. C. Hutton, T. Moseley, M. Hedrick, and H. Meisel, “Intervertebral Disc Repair Using Adipose Tissue-Derived Stem and Regenerative Cells,” vol. 34, no. 21, pp. 1–8, 2009.

    Google Scholar 

  87. D. Sakai et al., “Transplantation of mesenchymal stem cells embedded in Atelocollagen® gel to the intervertebral disc: A potential therapeutic model for disc degeneration,” Biomaterials, vol. 24, no. 20, pp. 3531–3541, 2003, https://doi.org/10.1016/S0142-9612(03)00222-9.

    Article  CAS  PubMed  Google Scholar 

  88. D. Sakai et al., “Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: Potential and limitations for stem cell therapy in disc regeneration,” Spine (Phila. Pa. 1976)., vol. 30, no. 21, pp. 2379–2387, 2005, https://doi.org/10.1097/01.brs.0000184365.28481.e3.

    Article  PubMed  Google Scholar 

  89. M. A. Adams and P. J. Roughley, “What is intervertebral disc degeneration, and what causes it?,” Spine (Phila. Pa. 1976)., vol. 31, no. 18, pp. 2151–61, Aug. 2006, https://doi.org/10.1097/01.brs.0000231761.73859.2c.

    Article  PubMed  Google Scholar 

  90. T. Oichi, Y. Taniguchi, Y. Oshima, S. Tanaka, and T. Saito, “Pathomechanism of intervertebral disc degeneration,” JOR Spine, vol. 3, no. 1, pp. 1–9, 2020, https://doi.org/10.1002/jsp2.1076.

    Article  Google Scholar 

  91. F. Colella et al., “Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents,” J. Control. Release, vol. 328, no. May, pp. 985–999, 2020, https://doi.org/10.1016/j.jconrel.2020.08.041.

    Article  CAS  PubMed  Google Scholar 

  92. M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer, “Engineering Precision Nanoparticles for Drug Delivery,” Nat. Rev. Drug Discov., pp. 1–24, 2020, https://doi.org/10.1038/s41573-020-0090-8.

  93. K. Dzobo et al., “Review Article Advances in Regenerative Medicine and Tissue Engineering : Innovation and Transformation of Medicine,” vol. 2018, 2018.

    Google Scholar 

  94. N. I. Md Fadilah, I. L. Mohd Isa, W. S. Wan Kamarul Zaman, Y. Tabata, and M. B. Fauzi, “The Effect of Nanoparticle-Incorporated Natural-Based Biomaterials towards Cells on Activated Pathways: A Systematic Review,” Polymers (Basel)., vol. 14, p. 476, 2022.

    Google Scholar 

  95. M. Cunniffe, F. J. O. Brien, S. Partap, T. J. Levingstone, K. T. Stanton, and G. R. Dickson, “The synthesis and characterization of nanophase hydroxyapatite using a novel dispersant-aided precipitation method,” pp. 1142–1149, 2010, https://doi.org/10.1002/jbm.a.32931.

  96. S. Vieira, S. Vial, R. L. Reis, and J. M. Oliveira, “Nanoparticles for bone tissue engineering,” Biotechnol. Prog., vol. 33, no. 3, pp. 590–611, 2017, https://doi.org/10.1002/btpr.2469.

    Article  CAS  PubMed  Google Scholar 

  97. G. Lewis, “Nanostructured Hydroxyapatite Coating on Bioalloy Substrates : Current Status and Future Directions,” vol. 2, no. 1, pp. 65–82, 2017.

    Google Scholar 

  98. V. Patravale, P. Dandekar, and R. Jain, “3 – Characterization techniques for nanoparticulate carriers,” in Woodhead Publishing Series in Biomedicine, V. Patravale, P. Dandekar, and R. B. T.-N. D. D. Jain, Eds. Woodhead Publishing, 2012, pp. 87–121.

    Google Scholar 

  99. I. Venugopal, A. I. Mehta, and A. A. Linninger, “Chapter 5 Drug Delivery Applications of Nanoparticles in the Spine,” vol. 2059.

    Google Scholar 

  100. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, “Nanoparticles as drug delivery systems,” Pharmacol. Reports, vol. 64, no. 5, pp. 1020–1037, 2012, https://doi.org/10.1016/S1734-1140(12)70901-5.

    Article  CAS  Google Scholar 

  101. P. Roughley, C. Hoemann, E. DesRosiers, F. Mwale, J. Antoniou, and M. Alini, “The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation.,” Biomaterials, vol. 27, no. 3, pp. 388–96, Jan. 2006, https://doi.org/10.1016/j.biomaterials.2005.06.037.

  102. A. I. Chou and S. B. Nicoll, “Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation,” J. Biomed. Mater. Res. A, vol. 91, no. 1, pp. 187–194, 2009, https://doi.org/10.1002/JBM.A.32191.

    Article  PubMed  Google Scholar 

  103. I. Doench et al., “Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering,” Polymers (Basel)., vol. 10, no. 11, 2018, https://doi.org/10.3390/polym10111202.

  104. M. Khandaker and S. Riahanizad, “Evaluation of electrospun nanofiber-anchored silicone for the degenerative intervertebral disc,” J. Healthc. Eng., 2017, https://doi.org/10.1155/2017/5283846.

  105. A. Yau, I. Sands, and Y. Chen, “Nano-Scale Surface Modifications to Advance Current Treatment Options for Cervical Degenerative Disc Disease (CDDD),” J. Orthop. Res. Ther., vol. 4, no. 9, 2019.

    Google Scholar 

  106. V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nat. Rev. Drug Discov. 2005 42, vol. 4, no. 2, pp. 145–160, Feb. 2005, https://doi.org/10.1038/nrd1632.

    Article  CAS  Google Scholar 

  107. S. Hua and S. Y. Wu, “The use of lipid-based nanocarriers for targeted pain therapies,” Front. Pharmacol., vol. 4 NOV, p. 143, 2013, https://doi.org/10.3389/FPHAR.2013.00143/BIBTEX.

    Article  Google Scholar 

  108. S. A. Chung et al., “Nucleus pulposus cellular longevity by telomerase gene therapy,” Spine (Phila. Pa. 1976)., vol. 32, no. 11, pp. 1188–1196, May 2007, https://doi.org/10.1097/BRS.0B013E31805471A3.

    Article  PubMed  Google Scholar 

  109. R. R. Banala et al., “Efficiency of dual siRNA-mediated gene therapy for intervertebral disc degeneration (IVDD),” Spine J., vol. 19, no. 5, pp. 896–904, May 2019, https://doi.org/10.1016/J.SPINEE.2018.10.016.

  110. T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev., vol. 65, no. 1, pp. 36–48, Jan. 2013, https://doi.org/10.1016/J.ADDR.2012.09.037.

  111. J. Gubernator, “Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity,” Expert Opin. Drug Deliv., vol. 8, no. 5, pp. 565–580, May 2011, https://doi.org/10.1517/17425247.2011.566552.

  112. Y. Barenholz, “Doxil® — The first FDA-approved nano-drug: Lessons learned,” J. Control. Release, vol. 160, no. 2, pp. 117–134, Jun. 2012, https://doi.org/10.1016/J.JCONREL.2012.03.020.

  113. E. Abbasi, S. F. Aval, A. Akbarzadeh, M. Milani, and H. T. Nasrabadi, “Dendrimers: synthesis, applications, and properties,” vol. 9, no. 1, pp. 1–10, 2014, https://doi.org/10.1186/1556-276X-9-247.

  114. V. Patravale, P. Dandekar, and R. Jain, “1 – Nanoparticulate systems as drug carriers: the need,” in Woodhead Publishing Series in Biomedicine, V. Patravale, P. Dandekar, and R. B. T.-N. D. D. Jain, Eds. Woodhead Publishing, 2012, pp. 1–28.

    Google Scholar 

  115. N. Phogat, M. Kohl, I. Uddin, and A. Jahan, “Chapter 11 – Interaction of Nanoparticles With Biomolecules, Protein, Enzymes, and Its Applications,” H.-P. Deigner and M. B. T.-P. M. Kohl, Eds. Academic Press, 2018, pp. 253–276.

    Google Scholar 

  116. K. Gardikis et al., “New Drug Delivery Nanosystem Combining Liposomal and Dendrimeric Technology (Liposomal Locked-In Dendrimers) for Cancer Therapy,” vol. 99, no. 8, pp. 3561–3571, 2010, https://doi.org/10.1002/jps.

  117. U. Kedar, P. Phutane, S. Shidhaye, and V. Kadam, “Advances in polymeric micelles for drug delivery and tumor targeting,” Nanomedicine Nanotechnology, Biol. Med., vol. 6, no. 6, pp. 714–729, 2010, https://doi.org/10.1016/j.nano.2010.05.005.

  118. T. E. Kavanaugh, T. A. Werfel, H. Cho, K. A. Hasty, and C. L. Duvall, “Particle-based technologies for osteoarthritis detection and therapy,” Drug Deliv. Transl. Res., vol. 6, no. 2, pp. 132–147, May 2016, https://doi.org/10.1007/s13346-015-0234-2.

  119. C. Y. Lin, S. T. Crowley, S. Uchida, Y. Komaki, K. Kataoka, and K. Itaka, “Treatment of Intervertebral Disk Disease by the Administration of mRNA Encoding a Cartilage-Anabolic Transcription Factor,” Mol. Ther. – Nucleic Acids, vol. 16, pp. 162–171, Jun. 2019, https://doi.org/10.1016/J.OMTN.2019.02.012.

  120. G. Feng et al., “Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis,” Adv. Healthc. Mater., vol. 7, no. 21, p. 1800623, Nov. 2018, https://doi.org/10.1002/ADHM.201800623.

  121. C. Evans, V. B. Kraus, and L. A. Setton, “Progress in intra-articular therapy,” vol. 10, no. 1, pp. 11–22, 2015, https://doi.org/10.1038/nrrheum.2013.159.Progress.

  122. J. Becerra, J. A. Andrades, E. Guerado, P. Zamora-Navas, J. M. López-Puertas, and A. H. Reddi, “Articular cartilage: Structure and regeneration,” Tissue Eng. – Part B Rev., vol. 16, no. 6, pp. 617–627, 2010, https://doi.org/10.1089/ten.teb.2010.0191.

    Article  CAS  PubMed  Google Scholar 

  123. T. Guo et al., “New Hope for Treating Intervertebral Disc Degeneration: Microsphere-Based Delivery System,” Front. Bioeng. Biotechnol., vol. 10, no. July, pp. 1–22, 2022, https://doi.org/10.3389/fbioe.2022.933901.

    Article  Google Scholar 

  124. R. J. Kulchar, B. R. Denzer, B. M. Chavre, M. Takegami, and J. Patterson, “A review of the use of microparticles for cartilage tissue engineering,” Int. J. Mol. Sci., vol. 22, no. 19, 2021, https://doi.org/10.3390/ijms221910292.

  125. T. Virmani and J. Gupta, “PHARMACEUTICAL APPLICATION OF MICROSPHERES: AN APPROACH FOR THE TREATMENT OF VARIOUS DISEASES Tarun Virmani * and Jyoti Gupta School of Pharmaceutical Sciences, M. V. N. University, Palwal – 121105, Haryana, India.,” Int. J. Pharm. Sci. Res., vol. 8, no. 8, pp. 3252–3260, 2017, https://doi.org/10.13040/IJPSR.0975-8232.8(8).3252-60.

  126. S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm., vol. 282, no. 1–2, pp. 1–18, 2004, https://doi.org/10.1016/j.ijpharm.2004.04.013.

    Article  CAS  PubMed  Google Scholar 

  127. E. Mathiowitz et al., “Biologically erodable microspheres as potential oral drug delivery systems,” Nature, vol. 386, no. 6623. pp. 410–414, 1997, https://doi.org/10.1038/386410a0.

    Article  CAS  PubMed  Google Scholar 

  128. Y. Y. Li et al., “Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc: reduced risk of osteophyte formation.,” Tissue Eng. Part A, vol. 20, no. 9–10, pp. 1379–91, 2014, https://doi.org/10.1089/ten.TEA.2013.0498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. M. Yuan, K. W. Leong, and B. P. Chan, “Three-dimensional Culture of Rabbit Nucleus Pulposus Cells in Collagen Microspheres,” Spine J., vol. 11, no. 10, pp. 947–960, 2011, https://doi.org/10.1016/j.spinee.2011.07.004.

    Article  PubMed  Google Scholar 

  130. Y. Xu et al., “Metabolism Balance Regulation via Antagonist-Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration,” Adv. Funct. Mater., vol. 30, no. 52, pp. 1–14, 2020, https://doi.org/10.1002/adfm.202006333.

    Article  CAS  Google Scholar 

  131. S. S. Sivan, I. Bonstein, Y. N. Marmor, G. Pelled, Z. Gazit, and M. Amit, “Encapsulation of Human-Bone-Marrow-Derived Mesenchymal Stem Cells in Small Alginate Beads Using One-Step Emulsification by Internal Gelation: In Vitro, and In Vivo Evaluation in Degenerate Intervertebral Disc Model,” Pharmaceutics, vol. 14, no. 6, 2022, https://doi.org/10.3390/pharmaceutics14061179.

  132. S. O. Adeosun, M. O. Ilomuanya, O. P. Gbenebor, M. O. Dada, and C. C. Odili, “Biomaterials for Drug Delivery: Sources, Classification, Synthesis, Processing, and Applications,” Adv. Funct. Mater., 2020, https://doi.org/10.5772/intechopen.93368.

  133. K. A. I. Zhu, F. Zhao, Y. Yang, and W. Mu, “Effects of simvastatin – loaded PLGA microspheres on treatment of rats with intervertebral disk degeneration and on 6 – K – PGF1 α and HIF – 1 α,” pp. 579–584, 2020, https://doi.org/10.3892/etm.2019.8267.

  134. A. R. Tellegen et al., “PT,” J. Control. Release, p. #pagerange#, 2018, https://doi.org/10.1016/j.jconrel.2018.08.019.

  135. S. Kim et al., “Nanoparticle Formulation for Controlled Release of Capsaicin,” 2011, https://doi.org/10.1166/jnn.2011.3636.

    Book  Google Scholar 

  136. N. Agnihotri, G. Soni, D. K. Chanchal, A. Khan, and S. Tiwari, “A REVIEW ON MICROSPHERES A NOVEL DRUG DELIVERY SYSTEM FOR MULTI- PARTICULATE DRUG RELEASE Neha Agnihotri *, G. C. Soni, Dilip Kumar Chanchal, Afrin Khan and Sakshi Tiwari Institute of Pharmacy, Bundelkhand University Jhansi – 284128, Uttar Pradesh, India,” vol. 5, no. 1, pp. 6–15, 2019, https://doi.org/10.13040/IJPSR.0975-8232.IJLSR.5(1).6-15.

  137. A. A. Ragab et al., “O RIGINAL A RTICLE A Preliminary Report on the Effects of Sustained Administration of Corticosteroid on Traumatized Disc Using the Adult Male Rat Model,” vol. 22, no. 7, pp. 473–478, 2009.

    Google Scholar 

  138. M. Nagae et al., “Intervertebral Disc Regeneration Using Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres,” vol. 13, no. 1, 2007, https://doi.org/10.1089/ten.2006.0042.

  139. K. Sawamura, T. Ikeda, D. Ph, M. Nagae, and D. Ph, “Characterization of In Vivo Effects of Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres on Degenerated Intervertebral Discs,” vol. 15, no. 12, 2009.

    Google Scholar 

  140. D. J. Gorth et al., “IL-1ra delivered from poly (lactic- co -glycolic acid) microspheres attenuates IL-1 b -mediated degradation of nucleus pulposus in vitro,” Arthritis Res. Ther., vol. 14, no. 4, p. R179, 2012, https://doi.org/10.1186/ar3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. D. J. Gorth et al., “In vivo retention and bioactivity of IL-1ra microspheres in the rat intervertebral disc: a preliminary investigation,” pp. 1–5, 2014, https://doi.org/10.1186/s40634-014-0015-8.

  142. C. Z. Liang et al., “Dual delivery for stem cell differentiation using dexamethasone and bFGF in / on polymeric microspheres as a cell carrier for nucleus pulposus regeneration,” pp. 1097–1107, 2012, https://doi.org/10.1007/s10856-012-4563-0.

  143. C. Liang et al., “Acta Biomaterialia Dual release of dexamethasone and TGF- b 3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model,” Acta Biomater., vol. 9, no. 12, pp. 9423–9433, 2013, https://doi.org/10.1016/j.actbio.2013.08.019.

    Article  CAS  PubMed  Google Scholar 

  144. J. M. Ho, H. Sung, R. Kim, Y. Wook, C. Myung, and J. Kang, “Recent advances in intra-articular drug delivery systems to extend drug retention in joint,” J. Pharm. Investig., vol. 0, no. 0, p. 0, 2018, https://doi.org/10.1007/s40005-018-0383-7.

  145. B. S. Grund, M. Bauer, and D. Fischer, “Polymers in Drug Delivery---State of the Art and Future Trends **,” no. 3, pp. 61–87, 2011, https://doi.org/10.1002/adem.201080088.

  146. W. R. Gombotz and S. F. Wee, “Protein release from alginate matrices,” vol. 31, pp. 267–285, 1998.

    Google Scholar 

  147. S. M. Sinclair et al., “A genetically engineered thermally responsive sustained release curcumin depot to treat neuroin fl ammation,” J. Control. Release, vol. 171, no. 1, pp. 38–47, 2013, https://doi.org/10.1016/j.jconrel.2013.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. D. R. Pereira et al., “Development of gellan gum-based microparticles/hydrogel matrices for application in the intervertebral disc regeneration,” Tissue Eng. – Part C Methods, vol. 17, no. 10, pp. 961–972, 2011, https://doi.org/10.1089/ten.tec.2011.0115.

    Article  CAS  PubMed  Google Scholar 

  149. Z. He et al., “Pr ep rin t n ot pe er re v Pr ep rin t n ot pe er,” 2022.

    Google Scholar 

  150. I. Sheikh and Y. Dahman, “Chapter 2 – Applications of nanobiomaterials in hard tissue engineering,” A. M. B. T.-N. in H. T. E. Grumezescu, Ed. William Andrew Publishing, 2016, pp. 33–62.

    Google Scholar 

  151. J. Leijten, J. Rouwkema, Y. S. Zhang, A. Nasajpour, M. R. Dokmeci, and A. Khademhosseini, “Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.,” Small, vol. 12, no. 16, pp. 2130–2145, Apr. 2016, https://doi.org/10.1002/smll.201501798.

  152. Y.-C. Huang, Y. Hu, Z. Li, and K. D. K. Luk, “Biomaterials for intervertebral disc regeneration: Current status and looming challenges,” J. Tissue Eng. Regen. Med., vol. 12, no. 11, pp. 2188–2202, Nov. 2018, https://doi.org/10.1002/term.2750.

  153. O. S. Fenton, K. N. Olafson, P. S. Pillai, M. J. Mitchell, and R. Langer, “Advances in Biomaterials for Drug Delivery,” Adv. Mater., vol. 30, no. 29, p. 1705328, Jul. 2018, https://doi.org/10.1002/adma.201705328.

  154. T. R. Hoare and D. S. Kohane, “Hydrogels in drug delivery : Progress and challenges,” Polym. with aligned carbon Nanotub. Act. Compos. Mater., vol. 49, no. 8, pp. 1993–2007, 2008, https://doi.org/10.1016/j.polymer.2008.01.027.

    Article  CAS  Google Scholar 

  155. B. Love, “Chapter 9 – Polymeric Biomaterials,” B. B. T.-B. Love, Ed. Academic Press, 2017, pp. 205–238.

    Google Scholar 

  156. J. Kopecek, “Hydrogel biomaterials: a smart future?,” Biomaterials, vol. 28, no. 34, pp. 5185–5192, Dec. 2007, https://doi.org/10.1016/j.biomaterials.2007.07.044.

  157. E. H. Schacht, “Polymer chemistry and hydrogel systems,” J. Phys. Conf. Ser., vol. 3, pp. 22–28, 2004, https://doi.org/10.1088/1742-6596/3/1/004.

    Article  CAS  Google Scholar 

  158. S. Mantha et al., “Smart Hydrogels in Tissue Engineering and Regenerative Medicine.,” Mater. (Basel, Switzerland), vol. 12, no. 20, Oct. 2019, https://doi.org/10.3390/ma12203323.

  159. Y. S. Zhang and A. Khademhosseini, “Advances in engineering hydrogels.,” Science, vol. 356, no. 6337, May 2017, https://doi.org/10.1126/science.aaf3627.

  160. R. Parhi, “Cross-Linked Hydrogel for Pharmaceutical Applications: A Review.,” Adv. Pharm. Bull., vol. 7, no. 4, pp. 515–530, Dec. 2017, https://doi.org/10.15171/apb.2017.064.

  161. G. Malucelli et al., “Sliding crosslinked thermoresponsive materials: Polypseudorotaxanes made of poly(N-Isopropylacrylamide) and acrylamide-γ-cyclodextrin,” Front. Chem., vol. 6, no. NOV, pp. 1–8, 2018, https://doi.org/10.3389/fchem.2018.00585.

    Article  CAS  Google Scholar 

  162. N. Karak, “1 – Fundamentals of polymers,” N. B. T.-V. O.-B. P. Karak, Ed. Woodhead Publishing, 2012, pp. 1–30.

    Google Scholar 

  163. S. Ishikawa et al., “Interpenetrating Polymer Network Hydrogels via a One-Pot and in Situ Gelation System Based on Peptide Self-Assembly and Orthogonal Cross-Linking for Tissue Regeneration,” Chem. Mater., vol. 32, no. 6, pp. 2353–2364, Mar. 2020, https://doi.org/10.1021/acs.chemmater.9b04725.

  164. Z. Li, Y. Zhou, T. Li, J. Zhang, and H. Tian, “Stimuli-responsive hydrogels: Fabrication and biomedical applications,” VIEW, vol. 3, no. 2, p. 20200112, Mar. 2022, https://doi.org/10.1002/VIW.20200112.

  165. L. Li, L. **e, R. Zheng, and R. Sun, “Self-Assembly Dipeptide Hydrogel: The Structures and Properties,” Front. Chem., vol. 9, no. September, pp. 1–15, 2021, https://doi.org/10.3389/fchem.2021.739791.

    Article  CAS  Google Scholar 

  166. Z. Wu, J. Zhang, Q. Lin, Y. Zhu, L. Wang, and Y. Li, “Movable-crosslinking tough hydrogels with lithium ion as sensitive and durable compressive sensor,” Polymer (Guildf)., vol. 214, p. 123257, 2021, https://doi.org/10.1016/j.polymer.2020.123257.

  167. C. Yan et al., “Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc,” Biomed Res. Int., vol. 2021, p. 2818624, 2021, https://doi.org/10.1155/2021/2818624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. A. Gloria, R. De Santis, L. Ambrosio, F. Causa, and K. E. Tanner, “A Multi-component Fiber-reinforced PHEMA-based Hydrogel/HAPEXTM Device for Customized Intervertebral Disc Prosthesis,” J. Biomater. Appl., vol. 25, no. 8, pp. 795–810, May 2010, https://doi.org/10.1177/0885328209360933.

  169. Y. Gan et al., “An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration,” Biomaterials, vol. 136, pp. 12–28, 2017, https://doi.org/10.1016/j.biomaterials.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  170. C. O. Crosby, B. Stern, N. Kalkunte, S. Pedahzur, S. Ramesh, and J. Zoldan, “Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering,” vol. 38, no. 3, pp. 347–361, 2022, https://doi.org/10.1515/revce-2020-0039.

  171. P. Y. Hwang, J. Chen, L. **g, B. D. Hoffman, and L. A. Setton, “The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review.,” J. Biomech. Eng., vol. 136, no. 2, p. 21010, Feb. 2014, https://doi.org/10.1115/1.4026360.

  172. J. Caldeira et al., “Matrisome Profiling during Intervertebral Disc Development and Ageing,” Sci. Rep., vol. 7, no. 1, pp. 1–15, 2017, https://doi.org/10.1038/s41598-017-11960-0.

    Article  CAS  Google Scholar 

  173. H. Liang, R. Luo, G. Li, W. Zhang, Y. Song, and C. Yang, “The Proteolysis of ECM in Intervertebral Disc Degeneration.,” Int. J. Mol. Sci., vol. 23, no. 3, Feb. 2022, https://doi.org/10.3390/ijms23031715.

  174. H. E. Gruber and E. N. Hanley Jr, “Analysis of aging and degeneration of the human intervertebral disc: comparison of surgical specimens with normal controls,” Spine (Phila. Pa. 1976)., vol. 23, no. 7, pp. 751–757, 1998.

    Google Scholar 

  175. A. Maroudas, R. A. Stockwell, A. Nachemson, and J. Urban, “Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro.,” J. Anat., vol. 120, no. Pt 1, p. 113, 1975.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. M. C. Catoira, L. Fusaro, D. Di Francesco, M. Ramella, and F. Boccafoschi, “Overview of natural hydrogels for regenerative medicine applications.,” J. Mater. Sci. Mater. Med., vol. 30, no. 10, p. 115, Oct. 2019, https://doi.org/10.1007/s10856-019-6318-7.

  177. I. L. Mohd Isa et al., “Implantation of Hyaluronic Acid Hydrogel Prevents the Pain Phenotype in a Rat Model of Intervertebral Disc Injury,” Sci. Adv., vol. 4, no. eaaq0597, pp. 1–19, 2018, https://doi.org/10.1126/sciadv.aaq0597.

    Article  CAS  Google Scholar 

  178. U. S. K. Madduma-Bandarage and S. V Madihally, “Synthetic hydrogels: Synthesis, novel trends, and applications,” J. Appl. Polym. Sci., vol. 138, no. 19, p. 50376, May 2021, https://doi.org/10.1002/app.50376.

  179. Y. Berkovitch and D. Seliktar, “Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis.,” Int. J. Pharm., vol. 523, no. 2, pp. 545–555, May 2017, https://doi.org/10.1016/j.ijpharm.2016.11.032.

  180. J. Li and D. J. Mooney, “Designing hydrogels for controlled drug delivery,” Nat. Rev. Mater., vol. 1, no. 12, p. 16071, 2016, https://doi.org/10.1038/natrevmats.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. A. Sood, A. Gupta, and G. Agrawal, “Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications,” Carbohydr. Polym. Technol. Appl., vol. 2, p. 100067, 2021, https://doi.org/10.1016/j.carpta.2021.100067.

  182. D. H. Hanna, V. F. Lotfy, A. H. Basta, and G. R. Saad, “Comparative evaluation for controlling release of niacin from protein- and cellulose-chitosan based hydrogels,” Int. J. Biol. Macromol., vol. 150, pp. 228–237, 2020, https://doi.org/10.1016/j.ijbiomac.2020.02.056.

    Article  CAS  PubMed  Google Scholar 

  183. A. R. Jackson, T.-Y. Yuan, C.-Y. Huang, and W. Y. Gu, “A Conductivity Approach to Measuring Fixed Charge Density in Intervertebral Disc Tissue,” Ann. Biomed. Eng., vol. 37, no. 12, pp. 2566–2573, 2009, https://doi.org/10.1007/s10439-009-9792-0.

    Article  PubMed  PubMed Central  Google Scholar 

  184. A. Vedadghavami, C. Zhang, and A. G. Bajpayee, “Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins,” Nano Today, vol. 34, p. 100898, 2020, https://doi.org/10.1016/j.nantod.2020.100898.

  185. H. Yoshihara and D. Yoneoka, “National trends in the surgical treatment for lumbar degenerative disc disease: United States, 2000 to 2009,” Spine J., vol. 15, no. 2, pp. 265–271, 2015, https://doi.org/10.1016/j.spinee.2014.09.026.

    Article  PubMed  Google Scholar 

  186. R. A. Deyo, D. T. Gray, W. Kreuter, S. Mirza, and B. I. Martin, “United States Trends in Lumbar Fusion Surgery for Degenerative Conditions,” Spine (Phila. Pa. 1976)., vol. 30, no. 12, 2005.

    Google Scholar 

  187. R. D. Bowles and L. A. Setton, “Biomaterials for Intervertebral Disc Regeneration and Repair,” Biomaterials, vol. 129, pp. 54–67, 2017, https://doi.org/10.1016/j.biomaterials.2017.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. A. Fusco et al., “168. Minimally invasive hydrogel nucleoplasty in a goat model of moderate severity disc degeneration,” Spine J., vol. 21, no. 9, Supplement, p. S84, 2021, https://doi.org/10.1016/j.spinee.2021.05.196.

    Article  Google Scholar 

  189. M. Inoue et al., “An Injectable Hyaluronic Acid Hydrogel Promotes Intervertebral Disc Repair in a Rabbit Model,” Spine (Phila. Pa. 1976)., vol. 46, no. 15, pp. E810–E816, 2021, https://doi.org/10.1097/brs.0000000000003921.

    Article  PubMed  Google Scholar 

  190. Z. Li et al., “Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease,” Carbohydr. Polym., vol. 184, pp. 342–353, 2018, https://doi.org/10.1016/j.carbpol.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  191. A. Schmocker et al., “A photopolymerized composite hydrogel and surgical implanting tool for a nucleus pulposus replacement,” Biomaterials, vol. 88, pp. 110–119, 2016, https://doi.org/10.1016/j.biomaterials.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  192. D. A. Frauchiger Rahel et al., “Genipinp-enhanced fibrin hydrogel and novel silk for intervertebral disc repair in a loaded bovine organ culture model,” Journal of Functional Biomaterials, vol. 9, no. 3. 2018, https://doi.org/10.3390/jfb9030040.

  193. C. J. Panebianco, T. J. DiStefano, B. Mui, W. W. Hom, and J. C. Iatridis, “Crosslinker concentration controls TGFβ-3 release and annulus fibrosus cell apoptosis in genipin-crosslinked fibrin hydrogels.,” Eur. Cell. Mater., vol. 39, pp. 211–226, May 2020, https://doi.org/10.22203/eCM.v039a14.

  194. T. J. DiStefano et al., “Development of a two-part biomaterial adhesive strategy for annulus fibrosus repair and ex vivo evaluation of implant herniation risk,” Biomaterials, vol. 258, p. 120309, 2020, https://doi.org/10.1016/j.biomaterials.2020.120309.

  195. E. A. Growney Kalaf, M. Pendyala, J. G. Bledsoe, and S. A. Sell, “Characterization and restoration of degenerated IVD function with an injectable, in situ gelling alginate hydrogel: An in vitro and ex vivo study,” J. Mech. Behav. Biomed. Mater., vol. 72, pp. 229–240, 2017, https://doi.org/10.1016/j.jmbbm.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  196. A. R. Tellegen et al., “Intradiscal Application of A PCLA–PEG–PCLA Hydrogel Loaded with Celecoxib for the Treatment of Back Pain in Canines: What’s In It for Humans?,” J. Tissue Eng. Regen. Med., vol. 12, no. 3, pp. 642–652, 2018, https://doi.org/10.1002/term.2483.

    Article  CAS  PubMed  Google Scholar 

  197. C. Gruver and K. B. Guthmiller, “Provocative Discography.,” Treasure Island (FL), 2022.

    Google Scholar 

  198. M. G. Lykissas and D. Giannoulis, “Minimally invasive spine surgery for degenerative spine disease and deformity correction: a literature review.,” Ann. Transl. Med., vol. 6, no. 6, p. 99, Mar. 2018, https://doi.org/10.21037/atm.2018.03.18.

  199. Ø. Øvrebø et al., “Design and clinical application of injectable hydrogels for musculoskeletal therapy,” Bioeng. Transl. Med., vol. 7, no. 2, p. e10295, May 2022, https://doi.org/10.1002/btm2.10295.

  200. Medtronic, “Infuse Bone Graft,” Medtronic.

    Google Scholar 

  201. M. Vigata, C. Meinert, D. W. Hutmacher, and N. Bock, “Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques.,” Pharmaceutics, vol. 12, no. 12, Dec. 2020, https://doi.org/10.3390/pharmaceutics12121188.

  202. P. Ghasemiyeh and S. Mohammadi-Samani, “Hydrogels as Drug Delivery Systems; Pros and Cons,” Trends Pharm. Sci., vol. 5, no. 1, pp. 7–24, 2019, https://doi.org/10.30476/tips.2019.81604.1002.

  203. C.-C. Lin and A. T. Metters, “Hydrogels in controlled release formulations: network design and mathematical modeling.,” Adv. Drug Deliv. Rev., vol. 58, no. 12–13, pp. 1379–1408, Nov. 2006, https://doi.org/10.1016/j.addr.2006.09.004.

  204. R. Bettini, P. Colombo, G. Massimo, P. L. Catellani, and T. Vitali, “Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects,” Eur. J. Pharm. Sci., vol. 2, pp. 213–219, 1994.

    Article  CAS  Google Scholar 

  205. J. Siepmann and N. A. Peppas, “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC).,” Adv. Drug Deliv. Rev., vol. 48, no. 2–3, pp. 139–157, Jun. 2001, https://doi.org/10.1016/s0169-409x(01)00112-0.

  206. C.-C. Lin and K. S. Anseth, “PEG hydrogels for the controlled release of biomolecules in regenerative medicine.,” Pharm. Res., vol. 26, no. 3, pp. 631–643, Mar. 2009, https://doi.org/10.1007/s11095-008-9801-2.

  207. V. Ravaine, C. Ancla, and B. Catargi, “Chemically controlled closed-loop insulin delivery.,” J. Control. release Off. J. Control. Release Soc., vol. 132, no. 1, pp. 2–11, Nov. 2008, https://doi.org/10.1016/j.jconrel.2008.08.009.

  208. S. Singh, A. A. Patel, and J. R. Singh, “Intervertebral Disc Degeneration: The Role and Evidence for Non-Stem-Cell-Based Regenerative Therapies.,” Int. J. spine Surg., vol. 15, no. s1, pp. 54–67, Apr. 2021, https://doi.org/10.14444/8055.

    Article  PubMed  PubMed Central  Google Scholar 

  209. H. Jia et al., “Injectable hydrogel with nucleus pulposus-matched viscoelastic property prevents intervertebral disc degeneration,” J. Orthop. Transl., vol. 33, pp. 162–173, 2022, https://doi.org/10.1016/j.jot.2022.03.006.

    Article  Google Scholar 

  210. Y. Wang et al., “Sustained gene delivery from inflammation-responsive anti-inflammatory hydrogels promotes extracellular matrix metabolism balance in degenerative nucleus pulposus,” Compos. Part B Eng., vol. 236, p. 109806, 2022, https://doi.org/10.1016/j.compositesb.2022.109806.

  211. N. Willems et al., “Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model,” Arthritis Res. Ther., vol. 17, no. 1, p. 214, 2015, https://doi.org/10.1186/s13075-015-0727-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. J. Wang et al., “Therapeutic effect of the injectable thermosensitive hydrogel loaded with SHP099 on intervertebral disc degeneration,” Life Sci., vol. 266, p. 118891, 2021, https://doi.org/10.1016/j.lfs.2020.118891.

  213. F. Hu et al., “Identification of inflammatory regulation roles of thalidomide/ruxolitinib in nucleus pulposus and construction of polyelectrolyte nanocomplexes-impregnated injectable hydrogels for synergistic intervertebral disk degeneration treatment,” Nano Today, vol. 44, p. 101462, 2022, https://doi.org/10.1016/j.nantod.2022.101462.

  214. J. Chen et al., “Injectable self-healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration,” Bioact. Mater., vol. 9, pp. 29–43, 2022, https://doi.org/10.1016/j.bioactmat.2021.08.003.

    Article  CAS  PubMed  Google Scholar 

  215. J. Bai et al., “Reactive Oxygen Species-Scavenging Scaffold with Rapamycin for Treatment of Intervertebral Disk Degeneration,” Adv. Healthc. Mater., vol. 9, no. 3, pp. 1–10, 2020, https://doi.org/10.1002/adhm.201901186.

    Article  CAS  Google Scholar 

  216. M. Likhitpanichkul et al., “Fibrin-genipin Annulus Fibrosus Sealant as a Delivery System for Anti-TNFα Drug,” Spine J., vol. 15, no. 2015, pp. 2045–2054, 2015, https://doi.org/10.1016/j.spinee.2015.04.026.

    Article  PubMed  PubMed Central  Google Scholar 

  217. H. **ng et al., “Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration,” J. Nanobiotechnology, vol. 19, no. 1, p. 264, 2021, https://doi.org/10.1186/s12951-021-00991-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. M. Peeters et al., “BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration,” Biores. Open Access, vol. 4, no. 1, pp. 398–406, Oct. 2015, https://doi.org/10.1089/biores.2015.0025.

  219. Z. Li et al., “Heterodimeric BMP-2/7 for nucleus pulposus regeneration—In vitro and ex vivo studies,” J. Orthop. Res., vol. 35, no. 1, pp. 51–60, Jan. 2017, https://doi.org/10.1002/jor.23351.

  220. K. D. Than et al., “Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease,” Spine J., vol. 14, no. 6, pp. 1017–1028, 2014, https://doi.org/10.1016/j.spinee.2013.11.034.

    Article  PubMed  Google Scholar 

  221. C. Ligorio et al., “TGF-β3-loaded graphene oxide – self-assembling peptide hybrid hydrogels as functional 3D scaffolds for the regeneration of the nucleus pulposus,” Acta Biomater., vol. 127, pp. 116–130, 2021, https://doi.org/10.1016/j.actbio.2021.03.077.

    Article  CAS  PubMed  Google Scholar 

  222. Y. Akyuva et al., “Delivering growth factors through a polymeric scaffold to cell cultures containing both nucleus pulposus and annulus fibrosus,” Turk. Neurosurg., vol. 29, no. 2, pp. 180–193, 2019, https://doi.org/10.5137/1019-5149.JTN.22672-18.1.

    Article  PubMed  Google Scholar 

  223. D. N. Paglia, H. Singh, T. Karukonda, H. Drissi, and I. L. Moss, “PDGF-BB delays degeneration of the intervertebral discs in a rabbit preclinical model,” Spine (Phila. Pa. 1976)., vol. 41, no. 8, pp. E449–E458, 2016, https://doi.org/10.1097/BRS.0000000000001336.

    Article  PubMed  Google Scholar 

Download references

Funding

We received funding from the Health Research Board, Ireland for the Emerging Investigator Award for Health 2022 (grant number EIA-2022-010), Ministry of Higher Education, Malaysia for the Fundamental Research Grant Scheme (grant number FRGS/1/2022/SKK10/UKM/02/12) and Universiti Kebangsaan Malaysia for the Geran Galakan Penyelidik Muda (grant number GGPM-2022-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isma Liza Mohd Isa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohd Isa, I. et al. (2024). Drug Delivery Systems for Intervertebral Disc. In: Murab, S. (eds) Drug Delivery Systems for Musculoskeletal Tissues. Springer, Cham. https://doi.org/10.1007/978-3-031-55653-1_4

Download citation

Publish with us

Policies and ethics

Navigation