Fuzzy Hidden Markov Chain Based Models for Time-Series Data

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1454))

Included in the following conference series:

  • 37 Accesses

Abstract

The hidden Markov model (HMM) has shown a remarkable capability when dealing with time series data. However, when extended to multiple sequence datasets, the alignment is of central importance. This paper presents a new modelling design framework for pairing HMM. In this framework, an interval type-II fuzzy logic (IT2FL) model is applied for multiple sequence alignment. The inference model can determine which data sequences mostly reflect the current state of the system. Unlike the mathematical computing methods, the model requires less amount of data and leads to a low computation complexity. Results show that the accuracy of the IT2FL model is better than that of an Artificial Neural Network (ANN), especially when the datasets are not large. This model can also be used for real-time multiple time series prediction and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov Models: Estimation and Control, vol. 29. Springer, New York (2008)

    Google Scholar 

  2. Krishnamurthy, V., Djonin, D.V.: Structured threshold policies for dynamic sensor scheduling—a partially observed Markov decision process approach. IEEE Trans. Signal Process. 55(10), 4938–4957 (2007)

    Article  MathSciNet  Google Scholar 

  3. Basak, S.C., Magnuson, V.R.: Molecular topology and narcosis. A quantitative structure-activity relationship (QSAR) study of alcohols using complementary information content (CIC). Arzneimittel-Forschung/Drug Res. 33(4), pp.501–503 (1983)

    Google Scholar 

  4. Dongmei, Z., **xing, L.: Approach to forecasting multi-step attack based on fuzzy hidden Markov model. J. Appl. Sci. 13, 4955–4960 (2013)

    Article  Google Scholar 

  5. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)

    Article  MathSciNet  Google Scholar 

  6. Cappé, O., Moulines, E., Rydén, T.: Inference in hidden Markov models. In: Proceedings of EUSFLAT Conference, pp. 14–16 (2009)

    Google Scholar 

  7. Lee, C.S., Wang, M.H.: A fuzzy expert system for diabetes decision support application. IEEE Trans. Syst. Man, Cybernet. Part B (Cybern.), 41(1), 139–153 (2010)

    Google Scholar 

  8. Casella, G., Berger, R.L.: Statistical Inference, vol. 2. Pacific Grove, CA: Duxbury (2002)

    Google Scholar 

  9. Ghoniem, R.M., Shaalan, K.: A Novel Arabic text-independent speaker verification system based on fuzzy hidden Markov model. Procedia Comput. Sci. 117, 274–286 (2017)

    Article  Google Scholar 

  10. Cassotti, M., Ballabio, D., Todeschini, R., Consonni, V.: A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas). SAR QSAR Environ. Res. 26(3), 217–243 (2015)

    Article  Google Scholar 

  11. Barysz, M., Jashari, G., Lall, R.S., Srivastava, V.K., Trinajstic, N.: On the distance matrix of molecules containing heteroatoms. Stud. Phys. Theoretical Chem. (1983)

    Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory John Wiley & Sons, New York, 68, pp.69-73 (1991)

    Google Scholar 

  13. Dong, M., He, D.: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis. Eur. J. Oper. Res. 178(3), 858–878 (2007)

    Article  Google Scholar 

  14. **ao, F., Ai, Q.: Data-driven multi-hidden Markov model-based power quality disturbance prediction that incorporates weather conditions. IEEE Trans. Power Syst. 34(1), 402–412 (2018)

    Article  Google Scholar 

  15. Basak, S.C., Gieschen, D.P., Magnuson, V.R.: A quantitative correlation of the LC50 values of esters in Pimephales promelas using physicochemical and topological parameters. Environ. Toxicol. Chem. Int. J. 3(2), 191–199 (1984)

    Article  Google Scholar 

  16. Hall, L.H., Kier, L.B.: Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 35(6), 1039–1045 (1995)

    Article  Google Scholar 

  17. Butina, D.: Performance of Kier-hall E-state descriptors in quantitative structure activity relationship (QSAR) studies of multifunctional molecules. Molecules 9(12), 1004–1009 (2004)

    Article  Google Scholar 

  18. Li, Z., Wang, D., Dey, N., Ashour, A.S., Sherratt, R.S., Shi, F.: Plantar pressure image fusion for comfort fusion in diabetes mellitus using an improved fuzzy hidden Markov model. Biocybern. Biomed. Eng. 39(3), 742–752 (2019)

    Article  Google Scholar 

  19. Kim, D.H., Jo, A., Kim, Y.: Nonparametric Bayesian analysis for multi-site hidden Markov model. Commun. Stat. Simul. Comput. 46(6), 4896–4907 (2017)

    Article  MathSciNet  Google Scholar 

  20. He, L., Zong, C.F., Wang, C.: Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model. J. Zhejiang Univ. Sci. C 13(3), 208–217 (2012)

    Article  Google Scholar 

  21. Johnston, L.A., Krishnamurthy, V.: Opportunistic file transfer over a fading channel: A POMDP search theory formulation with optimal threshold policies. IEEE Trans. Wireless Commun. 5(2), 394–405 (2006)

    Article  Google Scholar 

  22. Akhbari, M., Shamsollahi, M.B., Sayadi, O., Armoundas, A.A., Jutten, C.: ECG segmentation and fiducial point extraction using multi hidden Markov model. Comput. Biol. Med. 79, 21–29 (2016)

    Article  Google Scholar 

  23. Carincotte, C., Derrode, S., Bourennane, S.: Unsupervised change detection on SAR images using fuzzy hidden Markov chains. IEEE Trans. Geosci. Remote Sens. 44(2), 432–441 (2006)

    Article  Google Scholar 

  24. Evans, J., Krishnamurthy, V.: Optimal sensor scheduling for hidden Markov model state estimation. Int. J. Control. 74(18), 1737–1742 (2001)

    Article  MathSciNet  Google Scholar 

  25. Krishnamurthy, V.: Algorithms for optimal scheduling and management of hidden Markov model sensors. IEEE Trans. Signal Process. 50(6), 1382–1397 (2002)

    Article  Google Scholar 

  26. Foruzan, A.H., Khandani, I.K., Shokouhi, S.B.: Segmentation of brain tissues using a 3-D multi-layer hidden Markov model. Comput. Biol. Med. 43(2), 121–130 (2013)

    Article  Google Scholar 

  27. Halder, A., Adhikary, A.: Statistical physics analysis of maximum a posteriori estimation for multi-channel hidden Markov models. J. Stat. Phys. 150(4), 744–775 (2013)

    Article  MathSciNet  Google Scholar 

  28. Kim, D.H., Goh, G., Kim, Y.: Hierarchical Bayesian approach to a multi-site hidden Markov model. Commun. Stat. Simul. Comput. 43(6), 1241–1252 (2014)

    Article  MathSciNet  Google Scholar 

  29. Le Gland, F., Mevel, L.: Exponential forgetting and geometric ergodicity in hidden Markov models. Math. Control Signals Syst. 13(1), 63–93 (2000)

    Article  MathSciNet  Google Scholar 

  30. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley, Hoboken (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tao, Y., Mahfouf, M. (2024). Fuzzy Hidden Markov Chain Based Models for Time-Series Data. In: Panoutsos, G., Mahfouf, M., Mihaylova, L.S. (eds) Advances in Computational Intelligence Systems. UKCI 2022. Advances in Intelligent Systems and Computing, vol 1454. Springer, Cham. https://doi.org/10.1007/978-3-031-55568-8_2

Download citation

Publish with us

Policies and ethics

Navigation