Application of the Continuous Stern Gerlach Effect: Magnetic Moments

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 126))

  • 90 Accesses

Abstract

This chapter briefly reviews the measurements of magnetic moments that have been performed by application of the continuous Stern-Gerlach effect to a single particle confined in a Penning trap with a magnetic bottle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bluhm, V.A. Kostelecky, N. Russell, Testing CPT with anomalous magnetic moments. Phys. Rev. Lett. 79, 1432 (1997)

    Article  ADS  Google Scholar 

  2. R. Bluhm, V.A. Kostelecky, N. Russell, CPT and Lorentz tests in Penning traps. Phys. Rev. D 57, 3922 (1998)

    Article  ADS  Google Scholar 

  3. S. Sturm et al., Experiments for high-precision measurements of the bound electron’s magnetic moment. Atoms 5, 4 (2017)

    Article  ADS  Google Scholar 

  4. M. Vogel, W. Quint, (eds.), Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256. Springer (2014)

    Google Scholar 

  5. A. Landé, Termstruktur und Zeemaneffekt der Multipletts. Zeitschrift für Physik 15, 189 (1923)

    Article  ADS  Google Scholar 

  6. M. Vogel, The anomalous magnetic moment of the electron. Contemp. Phys. 50, 437 (2009)

    Article  ADS  Google Scholar 

  7. P.A.M. Dirac, The quantum theory of the electron, in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 117, p. 610 (1928)

    Google Scholar 

  8. P. Kusch, H.M. Foley, Precision measurement of the ratio of the atomic g values in the \(^2P_{3/2}\) and \(^2P_{1/2}\) states of gallium. Phys. Rev. 72, 1256 (1947)

    Article  ADS  Google Scholar 

  9. P. Kusch, H.M. Foley, On the intrinsic moment of the electron. Phys. Rev. 74, 250 (1948)

    Article  ADS  Google Scholar 

  10. J. Schwinger, On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416 (1948)

    Article  ADS  Google Scholar 

  11. H. Dehmelt, P. Ekstrom, Proposed \(g-2\) experiment on stored single electron or positron. Bull. Am. Phys. Soc. 18, 727 (1973)

    Google Scholar 

  12. H. Dehmelt, Continuous stern gerlach effect: principle and idealized apparatus. Proc. Natl. Acad. Sci. USA 83, 2291 (1986) and 83, 3074 (1986)

    Google Scholar 

  13. R.S. van Dyck, P.B. Schwinberg, H.G. Dehmelt, New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  14. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 97, 030802 (2006); Erratum ibidem 99, 039902 (2007)

    Google Scholar 

  15. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  16. R. Bouchendira et al., New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011)

    Article  ADS  Google Scholar 

  17. X. Fan, T.G. Myers, B.A.D. Sukra, G. Gabrielse, Measurement of the electron magnetic moment. Phys. Rev. Lett. 130, 071801 (2023)

    Article  ADS  Google Scholar 

  18. P.F. Winkler, D. Kleppner, T. Myint, F.G. Walther, Magnetic moment of the proton in Bohr magnetons. Phys. Rev. A 5, 83 (1972)

    Article  ADS  Google Scholar 

  19. X. Kreissl et al., Remeasurement of the magnetic moment of the antiproton. Z. Phys. C 37, 557 (1988)

    Article  ADS  Google Scholar 

  20. W. Quint, G. Gabrielse, The magnetic moment of the antiproton. Hyp. Int. 76, 379 (1993)

    Article  ADS  Google Scholar 

  21. W. Quint et al., Continuous Stern-Gerlach effect and the magnetic moment of the antiproton. Nucl. Inst. Meth. B 214, 207 (2004)

    Article  ADS  Google Scholar 

  22. C.C. Rodegheri et al., An experiment for the direct determination of the g-factor of a single proton in a Penning trap. New J. Phys. 14, 063011 (2012)

    Article  ADS  Google Scholar 

  23. N. Guise, J. DiSciacca, G. Gabrielse, Self-excitation and feedback cooling of an isolated proton. Phys. Rev. Lett. 104, 143001 (2010)

    Article  ADS  Google Scholar 

  24. A. Mooser et al., Direct high-precision measurement of the magnetic moment of the proton. Nature 509, 596 (2014)

    Article  ADS  Google Scholar 

  25. G. Schneider et al., Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 358, 1081 (2017)

    Google Scholar 

  26. J. DiSciacca, M. Marshall, K. Marable, G. Gabrielse, One-particle measurement of the antiproton magnetic moment. Phys. Rev. Lett. 110, 130801 (2013)

    Article  ADS  Google Scholar 

  27. C. Smorra et al., A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)

    Article  ADS  Google Scholar 

  28. M.J. Borchert et al., A 16-parts-per-trillion measurement of the antiproton to proton charge mass ratio. Nature 601, 53 (2022)

    Article  ADS  Google Scholar 

  29. O. Stern, W. Gerlach, Das magnetische Moment des Silberatoms [The magnetic moment of the silver atom]. Z. Phys. 9, 349 (1922) and Z. Phys. 9, 353 (1922)

    Google Scholar 

  30. W. Gerlach, O. Stern, Über die Richtungsquantelung im Magnetfeld. Ann. Phys. 379, 673 (1924)

    Article  Google Scholar 

  31. L. Brillouin, Is it possible to test by a direct experiment the hypothesis of the spinning electron? Proc. Natl. Acad. Sci. USA 14, 755 (1928)

    Article  ADS  Google Scholar 

  32. N. Bohr, in Collected Works of Niels Bohr, ed. by J. Kalckar, vol. 6 (North-Holland, Amsterdam, 1996)

    Google Scholar 

  33. W. Pauli, in Handbuch der Physik, Band 5: Prinzipien der Quantentheorien, ed. by S. Flügge (Springer, Berlin, 1958), p. 167

    Google Scholar 

  34. F. Bloch, Experiments on the \(g\)-factor of the electron. Physica 19, 821 (1953)

    Article  ADS  Google Scholar 

  35. H. Batelaan, T.J. Gay, J.J. Schwendiman, Stern-Gerlach effect for electron beams. Phys. Rev. Lett. 79, 4517 (1997)

    Article  ADS  Google Scholar 

  36. B.M. Garraway, S. Stenholm, Observing the spin of a free electron. Phys. Rev. A 60, 63 (1999)

    Article  ADS  Google Scholar 

  37. G.A. Gallup, H. Batelaan, T.J. Gay, Quantum-mechanical analysis of a longitudinal Stern-Gerlach effect. Phys. Rev. Lett. 86, 4508 (2001)

    Article  ADS  Google Scholar 

  38. B.M. Garraway, S. Stenholm, Does a flying electron spin? Contemp. Phys. 43, 147 (2002)

    Article  ADS  Google Scholar 

  39. J. Byrne, Study of a proposal for determining the \(g\)-factor anomaly for electrons by resonance excitation in a magnetic field. Can. J. Phys. 41, 1571 (1963)

    Article  ADS  Google Scholar 

  40. H.G. Dehmelt, New continuous Stern-Gerlach effect and a hint of “the” elementary particle. Z. Phys. D 10, 127 (1988)

    Google Scholar 

  41. A. Mooser et al., Resolution of single spin flips of a single proton. Phys. Rev. Lett. 110, 140405 (2013)

    Article  ADS  Google Scholar 

  42. N. Hermanspahn et al., Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. Phys. Rev. Lett. 84, 427 (2000)

    Article  ADS  Google Scholar 

  43. P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016)

    Article  ADS  Google Scholar 

  44. T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Tenth-order electron anomalous magnetic moment: contribution of diagrams without closed lepton loops. Phys. Rev. D 91, 033006 (2015)

    Article  ADS  Google Scholar 

  45. S. Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED. Phys. Lett. B 772, 232 (2017)

    Article  ADS  Google Scholar 

  46. S. Volkov, New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED. Phys. Rev. D 96, 096018 (2017)

    Article  ADS  Google Scholar 

  47. T. Beier, The \(g_j\)-factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 339, 79 (2000)

    Article  ADS  Google Scholar 

  48. A.V. Volotka, D.A. Glazov, G. Plunien, V.M. Shabaev, Progress in quantum electrodynamics theory of highly charged ions. Ann. Phys. 525, 636 (2013)

    Article  MathSciNet  Google Scholar 

  49. G. Breit, The magnetic moment of the electron. Nature 122, 649 (1928)

    Article  ADS  Google Scholar 

  50. V.M. Shabaev, V.A. Yerokhin, Recoil correction to the bound-electron \(g\)-factor in H-like atoms to all orders in \(\alpha Z\). Phys. Rev. Lett. 88, 091801 (2002)

    Article  ADS  Google Scholar 

  51. M. Vogel, W. Quint, Aspects of fundamental physics in precision spectroscopy of highly charged ions in penning traps. Ann. Phys. 525, 505 (2013)

    Article  Google Scholar 

  52. S. Sturm et al., g-factor measurement of hydrogen-like \(^{28}\)Si\(^{13+}\) as a challenge to QED calculations. Phys. Rev. A 87, 030501(R) (2013)

    Article  ADS  Google Scholar 

  53. V.M. Shabaev, D.A. Glazov, N.S. Oreshkina, A.V. Volotka, G. Plunien, H.J. Kluge, W. Quint, \(g\)-factor of heavy ions: a new access to the fine structure constant. Phys. Rev. Lett. 96, 253002 (2006)

    Article  ADS  Google Scholar 

  54. S. Sturm et al., High-precision measurement of the atomic mass of the electron. Nature 506, 467 (2014)

    Article  ADS  Google Scholar 

  55. F. Köhler et al., The electron mass from g-factor measurements on hydrogen-like carbon \(^{12}\)C\(^{5+}\). J. Phys. B. 48 (2015)

    Google Scholar 

  56. J.S. Tiedeman, H.G. Robinson, Determination of \(g_J(^1\)H\(,1^2S_{1/2)}/g_s(e)\): test of mass-independent corrections. Phys. Rev. Lett. 39, 602 (1977)

    Article  ADS  Google Scholar 

  57. A. Schneider et al., Direct measurement of the 3He+ magnetic moments. Nature 606, 878 (2022)

    Article  ADS  Google Scholar 

  58. C.E. Johnson, H.G. Robinson, \(g_J\) factor of an ion: determination of \(g_J (^4\)He\(^+,1^2S_{1/2)} / g_J(^4\)He\(,2^3S_1)\). Phys. Rev. Lett. 45, 250 (1980)

    Article  ADS  Google Scholar 

  59. H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogen-like carbon. Phys. Rev. Lett. 85, 5308 (2000)

    Article  ADS  Google Scholar 

  60. H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)

    Article  ADS  Google Scholar 

  61. J. Verdú et al., Electronic \(g\) factor of hydrogen-like oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)

    Article  ADS  Google Scholar 

  62. J. Verdú et al., Determination of the \(g\)-factor of single hydrogen-like ions by mode coupling in a Penning trap. Phys. Scripta T112, 68 (2004)

    Article  ADS  Google Scholar 

  63. F. Heisse et al., High-precision determination of g factors and masses of \(^{20}\)Ne\(^{9+}\) and \(^{22}\)Ne\(^{9+}\). Phys. Rev. Lett. 131, 253002 (2023)

    ADS  Google Scholar 

  64. S. Sturm et al., g factor of hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)

    Article  ADS  Google Scholar 

  65. B. Schabinger et al., Experimental g factor of hydrogenlike silicon-28. Eur. Phys. J. D 66, 71 (2012)

    Article  ADS  Google Scholar 

  66. A. Wagner et al., g factor of lithium-like silicon \(^{28}\)Si\(^{11+}\). Phys. Rev. Lett. 110, 033003 (2013)

    Article  ADS  Google Scholar 

  67. D.A. Glazov et al., g factor of lithiumlike silicon: new challenge to bound-state QED. Phys. Rev. Lett. 123, 173001 (2019)

    Article  ADS  Google Scholar 

  68. F. Köhler et al., Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Comm. 7, 10246 (2016)

    Article  ADS  Google Scholar 

  69. J. Morgner et al., Stringent test of QED with hydrogen-like tin. Nature 622, 53 (2023)

    Article  ADS  Google Scholar 

  70. V.M. Shabaev, Transition probability between the hyperfine structure components of hydrogenlike ions and bound-electron \(g\)-factor. Can. J. Phys. 76, 907 (1998)

    Article  ADS  Google Scholar 

  71. G.W.F. Drake (ed.), Handbook of Atomic. Molecular and Optical Physics (Springer, Heidelberg, 2006)

    Google Scholar 

  72. T. Sailer, V. Debierre, Z. Harman et al., Measurement of the bound-electron g-factor difference in coupled ions. Nature 606, 479 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2024). Application of the Continuous Stern Gerlach Effect: Magnetic Moments. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-031-55420-9_24

Download citation

Publish with us

Policies and ethics

Navigation