How to Build Occipital Lobes

  • Chapter
  • First Online:
How to Build a Human Brain

Abstract

Until now our brain has been built in the dark; it has no visual organs or pathways beyond the elementary brainstem eye movement circuitry already built in a previous chapter (see Chap. 2). To this end we require visual organs—eyes—containing light catchers called photoreceptors to synthesise movement, colour, shape, and depth information about the world. We also require efficient cabling to transfer these data to visual circuits within occipital lobes and other brain regions. The term occipital may be roughly (and unimaginatively) translated as located at the back of the head. We will need to perform some complicated biological processing of light signals, and we can partially complete this in the retina at the back of the eye, but we also need to transform these signals as they journey to occipital lobes at the back of the head. Through this transformative process, we can enhance, condense, extract, or fill-in visual data as it zips from the eye to the back of the brain, assembling and disassembling the visual scene at various pit-stops along the way. The distance between our eyes at the front of our head and occipital lobes at the back of the head provides us with crucial processing lag-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 51.35
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 63.29
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1(1), 21–62.

    Article  PubMed  Google Scholar 

  • Barker, L. A., Morton, N., Romanowski, C. A. J., & Gosden, K. (2013). Complete abolition of reading and writing ability with a third ventricle colloid cyst: Implications for surgical intervention and proposed neural substrates of visual recognition and visual imaging ability. BMJ Case Reports. https://doi.org/10.1136/bcr-2013-200854

  • Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neuroscience: Exploring the brain (3rd ed.). Lippincott Williams & Wilkins.

    Google Scholar 

  • Beul, S. F., & Hilgetag, C. C. (2015). Towards a ‘canonical’ agranular cortical microcircuit. Frontiers in Neuroanatomy, 8(165), 1–8.

    Google Scholar 

  • Bilo, L., Santangelo, G., Improta, I., Vitale, C., Meo, R., & Trojano, L. (2013). Neuropsychological profile of adult patients with nonsymptomatic occipital lobe epilepsies. Journal of Neurology, 260, 445–453.

    Article  PubMed  Google Scholar 

  • Birkhead, T. (2012). Bird sense. What it’s like to be a bird. Bloomsbury.

    Google Scholar 

  • Bischoff, M., & Bassetti, C. L. (2004). Total dream loss: A distinct neuropsychological dysfunction after bilateral PCA stroke. Annals of Neurology, 56, 583–586.

    Article  Google Scholar 

  • Boccia, M., Barbetti, S., Piccardi, L., Guariglia, C., Ferlazzo, F., Giannini, A. M., & Zaidel, D. W. (2016). Where does brain neural activation occur in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies. Neuroscience & Biobehavioural Reviews, 60, 65–71.

    Article  Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig.

    Google Scholar 

  • Broks, P. (2018). The darker the night the brighter the stars. A neuropsychologist’s odyssey. Penguin Random House.

    Google Scholar 

  • Chenin, L., Lefranc, M., Velut, S., Foulon, P., Havet, E., & Peltier, J. (2017). Cortical and subcortical functional neuroanatomy for low-grade glioma surgery. Neurochirurgie, 63, 117–121.

    Article  PubMed  Google Scholar 

  • Childs, C., Barker, L. A., Gage, A., & Loosemore, M. (2018). Investigating possible retinal biomarkers of head trauma in Olympic boxers using optical coherence tomography (OCT). Eye and Brain. https://www.dovepress.com/investigating-possible-retinal-biomarkers-of-head-trauma-in-olympic-bo-peer-reviewed-article-EB

  • Cullen, C. E., & Van Horn, M. R. (2011). The neural control of fast versus slow vergence eye movements. European Journal of Neuroscience, 33, 2147–2154.

    Article  PubMed  Google Scholar 

  • Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292, 497–523.

    Article  PubMed  Google Scholar 

  • DeFelipe, J. (2011). The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Frontiers in Neuroanatomy, 5(29), 1–17.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 6, 254–262. https://doi.org/10.1016/j.tics.2011.04.003

    Article  Google Scholar 

  • Douglas, R. H., Williamson, R., & Wagner, H.-J. (2005). The pupillary response of cephalopods. Journal of Experimental Biology, 208, 261–265.

    Article  PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.

    Article  PubMed  Google Scholar 

  • Frith, C. (2007). Making up the mind: How the brain creates our mental world. Blackwell Publishing.

    Google Scholar 

  • Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., & Barale, F. (2009). Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry & Neuroscience, 34(6), 418–432.

    Google Scholar 

  • Gazzaniga, M. (1967). The split brain in man. Scientific American, 217(2), 24–29.

    Article  PubMed  Google Scholar 

  • Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14, 350–363.

    Article  PubMed  Google Scholar 

  • Gollisch, T., & Meister, M. (2010). Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron Review, 65, 150–164.

    Article  Google Scholar 

  • Greene, L., Barker, L. A., & Reidy, J. (2022). Emotion recognition and eye tracking of static and dynamic facial affect: A comparison of individuals with and without traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 44(7), 461–477. https://doi.org/10.1080/13803395.2022.2128066

    Article  PubMed  Google Scholar 

  • Hadid, V., & Lepore, F. (2017). From cortical blindness to conscious visual perception: Theories on neuronal networks and visual training strategies. Frontiers in Systems Neuroscience, 11, 1–10.

    Article  Google Scholar 

  • Henderson, J. M. (2011). Eye movements and scene perception. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford handbook of eye movements (pp. 593–606). Oxford University Press.

    Google Scholar 

  • Henderson, J. M., & Choi, W. (2015). Neural correlates of fixation duration during real-world scene viewing: Evidence from fixation-related (FIRE) fMRI. Journal of Cognitive Neuroscience, 27, 1137–1145.

    Article  PubMed  Google Scholar 

  • Hendrickson, A. E., Wilson, J. R., & Ogren, M. P. (1978). The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. Journal of Comparative Neurology, 182, 123–136.

    Article  PubMed  Google Scholar 

  • Hering, E. (1977). Lehre vom binokularen Sehen. The theory of binocular vision (1868). Plenum Press.

    Google Scholar 

  • **dahra, P., Hengsiri, N., Witoonpanich, P., Poonyathalang, A., Pulkes, T., Tunlayadechanont, S., Thadanipon, K., & Vanikieti, K. (2020). Evaluation of retinal nerve fiber layer and ganglion cell thickness in Alzheimer’s disease using optical coherence tomography. Clinical Opthalmology, 14, 2995–3000.

    Article  Google Scholar 

  • Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: Predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society of London B, 370, 20140169. https://doi.org/10.1098/rstb.2014.0169

    Article  Google Scholar 

  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.

    Google Scholar 

  • Kühn, S., & Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal, and occipital volume. Molecular Psychiatry, 19, 842–847.

    Article  PubMed  Google Scholar 

  • Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. Psychological Science, 25, 188–197.

    Article  PubMed  Google Scholar 

  • Léveillard, T., & Sahel, J. A. (2017). Metabolic and redox signaling in the retina. Cell Molecular Life Science, 74, 3649–3665.

    Article  Google Scholar 

  • Lund, J. S. (1987). Local circuit neurons of macaque monkey striate cortex. I. Neurons of laminae 4C and 5A. Journal of Comparative Neurology, 257, 60–92.

    Article  PubMed  Google Scholar 

  • Lund, J. S., Hawken, M. J., & Parker, A. J. (1988). Local circuit neurons of macaque monkey striate cortex. II. Neurons of laminae 5B and 6. Journal of Comparative Neurology, 276, 1–29.

    Article  PubMed  Google Scholar 

  • Lund, J. S., & Yoshioka, T. (1991). Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B. Journal of Comparative Neurology, 331, 234–258.

    Google Scholar 

  • Lund, J. S., & Wu, C. Q. (1997). Local circuit neurons of macaque monkey striate cortex. IV. Neurons of laminae 1–3A. Journal of Comparative Neurology, 384, 109–126.

    Article  PubMed  Google Scholar 

  • Masland, R. H. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–886.

    Article  PubMed  Google Scholar 

  • Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76, 266–280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathews, G., & Fuchs, P. (2010). The diverse roles of ribbon synapses in sensory neurotransmission. Nature Reviews Neuroscience, 11, 812–822.

    Article  Google Scholar 

  • Mathôt, S., & Van der Stigchel, S. (2015). New light on the mind’s eye. The pupillary light response as active vision. Current Directions in Psychological Science, 24(5), 374–378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, W. (2018). Somebody I used to know. Bloomsbury.

    Google Scholar 

  • Morgia, C. L., Di Vito, L., Carelli, V., & Carbonelli, M. (2017). Patterns of retinal ganglion cell damage in neurodegenerative disorders: Parvocellular vs magnocellular degeneration in optical coherence tomography studies. Frontiers in Neurology. https://doi.org/10.3389/fneur.2017.00710

  • Mrejen, S., & Spaide, R. F. (2013). Optical coherence tomography: Imaging of the choroid and beyond. Survey of Ophthalmology, 58, 387–429.

    Article  PubMed  Google Scholar 

  • Narayan, D. S., Chidlow, G., Wood, J. P. M., & Casson, R. J. (2017). Glucose metabolism in mammalian photoreceptor inner and outer segments. Clinical and Experimental Ophthalmology, 45, 730–741.

    Article  PubMed  Google Scholar 

  • Nassi, J. J., & Calloway, E. M. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10, 360–372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann, D., Keiski, M. A., McDonald, B. C., & Wang, Y. (2014). Neuroimaging and facial affect processing: Implications for traumatic brain injury. Brain Imaging and Behavior, 8, 460–473.

    Article  PubMed  Google Scholar 

  • Nieuwenhuys, R. (2013). The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Structure and Function, 218, 303–352.

    Article  PubMed  Google Scholar 

  • Okawa, H., Sampath, A. P., Laughlin, S. B., & Fain, G. L. (2008). ATP consumption by mammalian rod photoreceptors in darkness and in light. Current Biology, 18, 1917–1921.

    Article  PubMed  Google Scholar 

  • O'Kusky, J., & Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology, 210, 278–290.

    Article  PubMed  Google Scholar 

  • Parr, T., & Friston, K. J. (2017). The active construction of the visual world. Neuropsychologia, 104, 92–101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Párraga, R. G., Ribas, G. C., Welling, L. C., Alves, R. V., & de Oliveira, E. (2012). Microsurgical anatomy of the optic radiation and related fibers in 3-dimensional images. Operative Neurosurgery, 71, 160–172.

    Article  Google Scholar 

  • Peres, R., Soares, J. G. M., Lima, B., Fiorani, M., Chiorri, M., Florentino, M. M., & Gattass, R. (2019). Neuronal response properties across cytochrome oxidase stripes in primate V2. Journal of Comparative Neurology, 527(3), 651–667. https://doi.org/10.1002/cne.24518

    Article  PubMed  Google Scholar 

  • Polyak, S. (1957). The vertebrate visual system. The University of Chicago Press.

    Google Scholar 

  • Presland, A., & Price, J. (2016). Ocular anatomy and physiology relevant to anaesthesia. Ophthalmology, 27–32.

    Google Scholar 

  • Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19, 473–481.

    Article  PubMed  Google Scholar 

  • Purves, D., Brannon, E. M., Cabeza, R., Huettal, S. A., LaBar, K. S., Platt, M. L., & Woldorff, M. G. (2008). Principles of cognitive neuroscience. Sinauer Associates Inc.

    Google Scholar 

  • Purves, D., & Lotto, B. (2011). Why we see what we do redux? A wholly empirical theory of vision. Sinauer Associates Inc.

    Google Scholar 

  • Radice-Neumann, D., Zupan, B., Babbage, D. R., & Willer, B. (2007). Overview of impaired facial affect recognition in persons with traumatic brain injury. Brain Injury, 21(8), 807–816.

    Article  PubMed  Google Scholar 

  • Reith, W., & Yilmaz, U. (2015). Orbita. Part 1: Anatomy, imaging procedures and retrobulbar lesions. The Radiologist, 55, 701–720.

    Article  Google Scholar 

  • Rowlands, M. (2010). The new science of the mind: From extended mind to embodied phenomenology. MIT Press.

    Book  Google Scholar 

  • Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T., & Jeffries, J. (2011). Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage, 54(3), 2524–2533.

    Article  PubMed  Google Scholar 

  • Sawides, L., de Castro, A., & Burns, S. A. (2017). The organization of the cone photoreceptor mosaic measured in the living human retina. Vision Research, 132, 34–44.

    Article  PubMed  Google Scholar 

  • Schmolesky, M. (2005). Webvision: The Organization of the Retina and Visual System.

    Google Scholar 

  • Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain, 115(1), 15–36.

    Article  PubMed  Google Scholar 

  • Shipp, S. (2007). Primer: Structure and function of the cerebral cortex. Cell Press Current Biology, 17(12), 1–7.

    Google Scholar 

  • Sperry, R. W. (1968). Hemisphere deconnection and unity in conscious awareness. American Psychologist, 28, 723–733.

    Article  Google Scholar 

  • Swienton, D. J. & Thomas, A. G. (2014). The visual pathway—functional anatomy and pathology. Seminars in ultrasound, CT, and MRI, (pp. 487–503).

    Google Scholar 

  • Takahata, T. (2016). What does cytochrome oxidase histochemistry represent in the visual cortex? Frontiers in Neuroanatomy, 10(79). https://doi.org/10.3389/fnana.2016.00079

  • Tan, K-A., Gupta, P., Agarwal, A., Chhablani, J., Cheng, C-Y., Keane, P. A., & Agrawal, R. (2016). State of science: Choroidal thickness and systemic health. Survey of Ophthalmology, 61, 566–581.

    Google Scholar 

  • Tohid, H., Faizan, M., & Faizan, U. (2015). Alterations of the occipital lobes in schizophrenia. Neurosciences, 20(3), 213–224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tootell, R. B. H., & Nasr, S. (2017). Columnar segregation of magnocellular and parvocellular streams in human extrastriate cortex. The Journal of Neuroscience, 37(33), 8014–8032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.

    Article  PubMed  Google Scholar 

  • von Helmholtz, H. (1962). Helmholtz’s treatise on physiological optics. Dover Publications, Inc.

    Google Scholar 

  • Waite, T. (2016). Taken on trust, 25th anniversary edition paperback. Great Britain, Clays LTD., St Ives PLC.

    Google Scholar 

  • Weiskrantz, L., Warrington, E. K., Sanders, M. D., & Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97(4), 709–728. https://doi.org/10.1093/brain/97.1.709.

  • Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171(1), 11–28.

    Article  PubMed  Google Scholar 

  • Yeatman, J. D., Weiner, K. S., Pestilli, F., Rokem, A., Mezer, A., & Wandell, B. A. (2014). The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. Proceedings of the National Academy of Sciences, 111(48), E5214–E5223.

    Article  Google Scholar 

  • Zhou, B., Pöppel, E., Wang, L., Yang, T., Zaytseva, Y., & Bao, Y. (2016). Seeing without knowing: Operational principles along the early visual pathway. PsyCh Journal, 5(3), 145–160.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne Barker .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barker, L. (2024). How to Build Occipital Lobes. In: How to Build a Human Brain. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-55297-7_5

Download citation

Publish with us

Policies and ethics

Navigation