Finding an Approximate Riemann Solver via Relaxation: Concept and Advantages

  • Conference paper
  • First Online:
Hyperbolic Problems: Theory, Numerics, Applications. Volume II (HYP 2022)

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 35))

Abstract

We first explain the general concept of relaxation models using the **-**n model for scalar conservation laws. Then we consider the Suliciu model specifically for the homogeneous Euler equations. In a third step, using a two-speed relaxation model for the Euler equations with gravity as an example, we show how the construction of the relaxation system can endow the resulting method with useful properties. Finally, these properties are verified in numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birke, C., Chalons, C., Klingenberg, C.: A low Mach two-speed relaxation scheme for the compressible Euler equations with gravity. ar**v:2112.02986v3 (2023)

  2. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics, Birkhäuser, Basel (2004)

    Google Scholar 

  3. Bouchut, F., Chalons, C., Guisset, S.: An entropy satisfying two-speed relaxation system for the barotropic Euler equations. Application to the numerical approximation of low Mach number flows. Numer. Math. 145, 35–76 (2020)

    Google Scholar 

  4. Brenier, Y.: Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21, 1013–1037 (1984)

    Article  MathSciNet  Google Scholar 

  5. Chandrashekar, P., Klingenberg, C.: A second order well-balanced finite volume scheme for Euler equations with gravity. SIAM J. Sci. Comput. 37(3), B382–B402 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chapman, S., Cowling, T.: Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  7. Coquel, F., Godlewski, E., Perthame, B., In, A., Rascle, P.: Some new Godunov and relaxation methods for two-phase flow problems. In: Toro, E.F. (ed.) Godunov Methods, pp. 179–188. Springer, New York (2001)

    Chapter  Google Scholar 

  8. Coquel, F., Perthame, B.: Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Num. Anal. 35, 2223–2249 (1998)

    Article  MathSciNet  Google Scholar 

  9. Desveaux, V., Zenk, M., Berthon, C., Klingenberg, C.: Well-balanced schemes to capture non-explicit steady states in the Euler equations with gravity. Int. J. Num. Methods Fluids 81(2), 104–127 (2016)

    Article  MathSciNet  Google Scholar 

  10. Godunov, S.K.: A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 357–393 (1959)

    Google Scholar 

  11. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  Google Scholar 

  12. **, S., **n, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Appl. Math. 48(3), 235–276 (1995)

    Article  MathSciNet  Google Scholar 

  13. Miczek, F., Röpke, F.K., Edelmann, P.V.F.: New numerical solver for flows at various Mach numbers. Astron. Astrophys. 576(A50) (2015)

    Google Scholar 

  14. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  15. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  16. Suliciu, I.: On modelling phase transitions by means of rate-type constitutive equations. Shock wave structure. Internat. J. Eng. Sci. 28, 829–841 (1990)

    Google Scholar 

  17. Thomann, A., Puppo, G., Klingenberg, C.: An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys. 420 (2020)

    Google Scholar 

  18. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the Seven-League Hydro Code (https://slh-code.org) for our numerical experiments. The work of Claudius Birke and Christian Klingenberg is supported by the German Research Foundation (DFG) through the grant KL 566/22-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klingenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Birke, C., Klingenberg, C. (2024). Finding an Approximate Riemann Solver via Relaxation: Concept and Advantages. In: Parés, C., Castro, M.J., Morales de Luna, T., Muñoz-Ruiz, M.L. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Volume II. HYP 2022. SEMA SIMAI Springer Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-031-55264-9_2

Download citation

Publish with us

Policies and ethics

Navigation