A Deep Learning Approach for Detection and Localization of Leaf Anomalies

  • Chapter
  • First Online:
Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 151))

  • 61 Accesses

Abstract

The detection and localization of possible diseases in crops are usually automated by resorting to supervised deep learning approaches. In this work, we tackle these goals with unsupervised models, by applying three different types of autoencoders to a specific open-source dataset of healthy and unhealthy pepper and cherry leaf images. CAE, CVAE and VQ-VAE autoencoders are deployed to screen unlabeled images of such a dataset, and compared in terms of image reconstruction, anomaly removal, detection and localization. The vector-quantized variational architecture turns out to be the best performing one with respect to all these targets.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The image flip** around the vertical axis is also known as flop**.

References

  1. Agrio - Precision plant protection. Made easy! https://agrio.app/

  2. Cleverfarm - Accelerating the world’s transition to sustainable farming. https://www.cleverfarm.ag/

  3. Dynacrop - Increase farming productivity with satellite monitoring. https://dynacrop.space/en/

  4. Pixofarm - Accurate yield estimation for your orchard. https://www.pixofarm.com/

  5. Plantix - Your crop doctor. https://plantix.net/en/

  6. PyTorch. https://pytorch.org/docs/stable/index.html

  7. United Nations: Department of Economic and Social Affairs - Sustainable development, food security and nutrition and sustainable agriculture: Sustainable development knowledge platform (2018)

    Google Scholar 

  8. Benfenati, A., Causin, P., Oberti, R., Stefanello, G.: Unsupervised deep learning techniques for powdery mildew recognition based on multispectral imaging. ar**v:2112.11242 (2021)

  9. Boulent, J., Foucher, S., Théau, J., St-Charles, P.-L.: Convolutional neural networks for the automatic identification of plant diseases. Front. Plant Sci. 10 (2019)

    Google Scholar 

  10. Chlingaryan, A., Sukkarieh, S., Whelan, B.: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151, 61–69 (2018)

    Article  Google Scholar 

  11. Dale, V.H., Polasky, S.: Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 64(2), 286–296 (2007)

    Article  Google Scholar 

  12. Fernández, A., Bella, J., Dorronsoro, J.R.: Supervised outlier detection for classification and regression. Neurocomputing 486, 77–92 (2022)

    Article  Google Scholar 

  13. Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Van Den Hengel, A.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1705–1714, Seoul, Korea (South) (2019)

    Google Scholar 

  14. Harakannanavar, S.S., Rudagi, J.M., Puranikmath, V.I., Siddiqua, A., Pramodhini, R.: Plant leaf disease detection using computer vision and machine learning algorithms. Glob. Trans. Proc. 3(1), 305–310 (2022)

    Article  Google Scholar 

  15. Jia, W., Shukla, R.M., Sengupta, S.: Anomaly detection using supervised learning and multiple statistical methods. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1291–1297 (2019)

    Google Scholar 

  16. Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X.: A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v:1412.6980 (2017)

  18. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found. Trends Mach. Learn. 12(4), 307–392 (2019)

    Article  Google Scholar 

  19. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  20. Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agriculture: a review. Sensors 18(8), 2674 (2018)

    Article  Google Scholar 

  21. Messick, R.M., Heaton, M.J., Hansen, N.: Multivariate spatial map** of soil water holding capacity with spatially varying cross-correlations. Ann. Appl. Stat. 11(1), 69–92 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mohanthy, S.P.: PlantVillage Dataset (2016)

    Google Scholar 

  23. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7 (2016)

    Google Scholar 

  24. Morawski, F., Bejger, M., Cuoco, E., Petre, L.: Anomaly detection in gravitational waves data using convolutional autoencoders. Mach. Learn. Sci. Technol. 2(4), 045014 (2021)

    Article  Google Scholar 

  25. Mouton, C., Myburgh, J.C., Davel, M.H.: Stride and translation invariance in CNNs. In: Gerber, A. (ed.) Artificial Intelligence Research, pp. 267–281. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  26. Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: reinforcement learning from partially labeled anomaly data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, pp. 1298–1308, New York (2021)

    Google Scholar 

  27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  28. Pinaya, W.H.L., Tudosiu, P.-D., Gray, R., Rees, G., Nachev, P., Ourselin, S., Cardoso, M.J.: Unsupervised brain anomaly detection and segmentation with transformers. ar**v:2102.11650 (2021)

  29. Pintelas, E., Livieris, I.E., Pintelas, P.E.: A convolutional autoencoder topology for classification in high-dimensional noisy image datasets. Sensors 21(22), 7731 (2021)

    Article  Google Scholar 

  30. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  31. Sharma, R., Kamble, S.S., Gunasekaran, A., Kumar, V., Kumar, A.: A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Operat. Res. 119, 104926 (2020)

    Article  MathSciNet  Google Scholar 

  32. Shorten, C., Khoshgoftaar, T.A.: A survey on image data augmentation for deep learning. J. Big Data 6(60), 400–407 (2019)

    Google Scholar 

  33. Snell, C.: Understanding VQ-VAE (DALL-E Explained Pt. 1) - ML@B Blog, Sept. 2021

    Google Scholar 

  34. Trang, K., TonThat, L., Minh Thao, N.G.: Plant leaf disease identification by deep convolutional autoencoder as a feature extraction approach. In: 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 522–526 (2020)

    Google Scholar 

  35. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. ar**v:1711.00937 (2018)

  36. Venkataramanan, S., Peng, K.-C., Singh, R.V., Mahalanobis, A.: Attention guided anomaly localization in images. ar**v:1911.08616 (2019)

  37. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. 81, 160–173 (2018)

    Article  Google Scholar 

  38. Wang, L., Zhang, D., Guo, J., Han, Y.: Image anomaly detection using normal data only by latent space resampling. Appl. Sci. 10(23), 8660 (2020)

    Article  Google Scholar 

  39. Yang, Y., **ang, S., Zhang, R.: Improving unsupervised anomaly localization by applying multi-scale memories to autoencoders. ar**v:2012.11113 (2020)

  40. Zhang, N., Wang, M., Wang, N.: Precision agriculture-a worldwide overview. Comput. Electron. Agric. 36(2), 113–132 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Massimiliano Lupo Pasini thanks Dr. Vladimir Protopopescu for his valuable feedback in the preparation of this manuscript. Massimiliano Lupo Pasini’s work was supported in part by the Artificial Intelligence Initiative as part of the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. Simona Perotto and Nicola Ferro acknowledge the support by MUR, grant Dipartimento di Eccellenza 2023–2027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Calabrò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calabrò, D., Pasini, M.L., Ferro, N., Perotto, S. (2024). A Deep Learning Approach for Detection and Localization of Leaf Anomalies. In: Rozza, G., Stabile, G., Gunzburger, M., D'Elia, M. (eds) Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators. Lecture Notes in Computational Science and Engineering, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-031-55060-7_3

Download citation

Publish with us

Policies and ethics

Navigation