Applications of Extremophiles in Therapeutics

  • Chapter
  • First Online:
Trends in Biotechnology of Polyextremophiles

Abstract

Extremophiles are a group of organisms capable of thriving in extreme environmental conditions, such as high temperature, acidity, salinity, pressure, and low oxygen levels. They are a diverse group of microorganisms classified based on their unique ability to survive in these harsh conditions. These microorganisms possess molecular mechanisms that allow them to produce or modify enzymes that work effectively in extreme environments. As a result, they are utilized in biotechnological processes and have recently gained interest for their therapeutic potential. For example, enzymes produced by thermophiles can prevent changes in the structure of proteins, potentially aiding in the treatment of neurodegenerative diseases like Huntington’s, Alzheimer’s, and Parkinson’s. In this chapter, we will explore the role of extremophiles in improving the healthcare sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65(4):1710–1720. https://doi.org/10.1128/AEM.65.4.1710-1720.1999. PMID: 10103272; PMCID: PMC91242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66(7):3052–3057. https://doi.org/10.1128/AEM.66.7.3052-3057.2000. PMID: 10877805; PMCID: PMC92110

    Article  PubMed  PubMed Central  Google Scholar 

  • Arakawa T, Timasheff S (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564(1–2):121–125

    Article  CAS  PubMed  Google Scholar 

  • Babu P, Chandel AK, Singh OV, Babu P, Chandel AK, Singh OV (2015) Survival mechanisms of extremophiles. In: Extremophiles and their applications in medical processes, vol 9-23. Springer, Berlin

    Chapter  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15(4):165–171

    Article  CAS  PubMed  Google Scholar 

  • Barbara N, Gianluca A, Annarita P (2012) Bacterial polymers produced by extremophiles: biosynthesis, characterization, and applications of exopolysaccharides. In: Extremophiles: sustainable resources and biotechnological implications. Wiley, Hoboken, pp 335–355

    Chapter  Google Scholar 

  • Charlesworth JC, Burns BP (2015) Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 4:2015

    Google Scholar 

  • Dalmaso GZ, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965. https://doi.org/10.3390/md13041925. PMID: 25854643; PMCID: PMC4413194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daoud L, Ali MB (2020) Halophilic microorganisms: interesting group of extremophiles with important applications in biotechnology and environment. In: Physiological and biotechnological aspects of extremophiles. Academic Press, Cambridge, pp 51–64

    Chapter  Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126. https://doi.org/10.1016/j.mib.2015.05.009. Epub 2015 Jun 9. PMID: 26066288; PMCID: PMC4729366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517. https://doi.org/10.1002/embr.201338170. Epub 2014 Mar 26. PMID: 24671034; PMCID: PMC4210084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vrese M, Kristen H, Rautenberg P, Laue C, Schrezenmeir J (2011) Probiotic lactobacilli and bifidobacteria in a fermented milk product with added fruit preparation reduce antibiotic associated diarrhea and helicobacter pylori activity. J Dairy Res 78(4):396–403

    Article  PubMed  Google Scholar 

  • Dey P, Krishna Murthy TP, Divyashri G, Kumar B, Shivaswamy C, Chatterjee D, Balu G, Prakash M, Dsouza MA, Bekal M, Chandrashekar N (2022) Prospects of biofuels, biofertilizers, and therapeutics from extremophiles. In: Extremophiles: a paradox of nature with biotechnological implications, vol 1. De Gruyter Academic Publishing, Berlin, p 131

    Chapter  Google Scholar 

  • Duan Z, Ji D, Weinstein EJ, Liu X, Susa M, Choy E, Yang C, Mankin H, Hornicek FJ (2010) Lentiviral shRNA screen of human kinases identifies PLK1 as a potential therapeutic target for osteosarcoma. Cancer Lett 293(2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Dutta B, Bandopadhyay R (2022) Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni Suef Univ J Basic Appl Sci 11(1):75. https://doi.org/10.1186/s43088-022-00252-w. Epub 2022 May 31. PMID: 35669848; PMCID: PMC9152817

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmer GW (2001) Probiotics:“living drugs”. Am J Health Syst Pharm 58(12):1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Finore I, Lama L, Poli A, Di Donato P, Nicolaus B (2015) Biotechnology implications of extremophiles as life pioneers and wellspring of valuable biomolecules. Microbial factories: biodiversity, biopolymers, bioactive. Molecules 2:193–216

    Google Scholar 

  • Furusho K, Yoshizawa T, Shoji S (2005) Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado–Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 20(1):170–178

    Article  CAS  PubMed  Google Scholar 

  • Georgieva E, Ivanov V, Nikolova G, Parlapanska K, Karamalakova Y (2022) Extremophiles: microorganisms with source of bioactive compounds and potential therapeutic potential. Trakia J Sci 20(4):297

    Article  Google Scholar 

  • Gordon VD, Wang L (2019) Bacterial mechanosensing: the force will be with you, always. J Cell Sci 132(7):jcs227694. https://doi.org/10.1242/jcs.227694. PMID: 30944157; PMCID: PMC6467485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandy G, Medina M, Soria R, Terán CG, Araya M (2010) Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Dis 10:1–7

    Article  Google Scholar 

  • Irwin JA, Baird AW (2004) Extremophiles and their application to veterinary medicine. Ir Vet J 57(6):348–354. https://doi.org/10.1186/2046-0481-57-6-348. PMID: 21851659; PMCID: PMC3113819

    Article  PubMed  PubMed Central  Google Scholar 

  • ** M, Gai Y, Guo X, Hou Y, Zeng R (2019) Properties and applications of extremozymes from Deep-Sea extremophilic microorganisms: a mini review. Mar Drugs 17(12):656. https://doi.org/10.3390/md17120656. PMID: 31766541; PMCID: PMC6950199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge CD, Ventura R, Maycock C, Outeiro TF, Santos H, Costa J (2011) Assessment of the efficacy of solutes from extremophiles on protein aggregation in cell models of Huntington’s and Parkinson’s diseases. Neurochem Res 36:1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Jorge CD, Borges N, Bagyan I et al (2016) Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare. Extremophiles 20:251–259. https://doi.org/10.1007/s00792-016-0828-8

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol 64(4):1510–1513. https://doi.org/10.1128/AEM.64.4.1510-1513.1998. PMID: 9546187; PMCID: PMC106178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochhar N, Kavya IK, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microb Sci 3:100134. https://doi.org/10.1016/j.crmicr.2022.100134. PMID: 35909612; PMCID: PMC9325743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Singh A (2012) Smart therapeutics from extremophiles: unexplored applications and technological challenges. Extremophiles Sustainable Resour Biotechnol Implications 2:389–401

    Article  Google Scholar 

  • Kumar M, Kochhar N, Kavya IK, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microbial Sci 21:100134

    Google Scholar 

  • Lechevalier H (1992) Actinomycetes and their products: a look at the future. World J Microbiol Biotechnol 8:72–73

    Article  PubMed  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Liévin-Le Moal V, Sarrazin-Davila LE, Servin AL (2007) An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of lactobacillus acidophilus strain LB against nonrotavirus diarrhea. Pediatrics 120(4):e795–e803

    Article  PubMed  Google Scholar 

  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137(5):835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63(40):9923–9932

    Article  CAS  Google Scholar 

  • Melchionna S, Sinibaldi R, Briganti G (2006) Explanation of the stability of thermophilic proteins based on unique micromorphology. Biophys J 90(11):4204–4212. https://doi.org/10.1529/biophysj.105.078972. Epub 2006 Mar 13. PMID: 16533850; PMCID: PMC1459513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michetti P, Dorta G, Wiesel PH, Brassart D, Verdu E, Herranz M, Felley C, Porta N, Rouvet M, Blum AL, Corthesy-Theulaz I (1999) Effect of whey-based culture supernatant of lactobacillus acidophilus (johnsonii) La1 on helicobacter pylori infection in humans. Digestion 60(3):203–209

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, Ten Bruggencate SJ, Schonewille AJ, Alhoniemi E, Forssten SD, Bovee-Oudenhoven IM (2014) Lactobacillus acidophilus supplementation in human subjects and their resistance to enterotoxigenic Escherichia coli infection. Br J Nutr 111(3):465–473

    Article  CAS  PubMed  Google Scholar 

  • Pantoflickova D, Corthesy-Theulaz I, Dorta G, Stolte M, Isler P, Rochat F, Enslen M, Blum AL (2003) Favourable effect of regular intake of fermented milk containing lactobacillus johnsonii on helicobacter pylori associated gastritis. Aliment Pharmacol Ther 18(8):805–813

    Article  CAS  PubMed  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life (Basel) 3(3):482–485. https://doi.org/10.3390/life3030482. PMID: 25369817; PMCID: PMC4187170

    Article  PubMed  Google Scholar 

  • Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea 2013:373275. https://doi.org/10.1155/2013/373275. Epub Sep 16. PMID: 24151449; PMCID: PMC3787623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21(4):651–670. https://doi.org/10.1007/s00792-017-0939-x. Epub 2017 May 15. PMID: 28508135; PMCID: PMC5487899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH, Jacobs RS, Marshall LA (2002) Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res 51(2):112

    Article  CAS  PubMed  Google Scholar 

  • Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM (2018) Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 42(5):543–578. https://doi.org/10.1093/femsre/fuy012. PMID: 29945179; PMCID: PMC6454523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaishi S, Tuchiya N, Sato A, Negishi T, Takamatsu Y, Matsushita Y, Watanabe T, Iijima Y, Haruyama H, Kinoshita T, Tanaka M (1998) B-90063, a novel endothelin converting enzyme inhibitor isolated from a new marine bacterium, Blastobacter sp. SANK 71894. J Antibiot 51(9):805–815

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544. https://doi.org/10.1128/MMBR.62.2.504-544.1998. PMID: 9618450; PMCID: PMC98923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J (2020) Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol 8:483. https://doi.org/10.3389/fbioe.2020.00483. PMID: 32596215; PMCID: PMC7303364

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Health Research, Government of India, New Delhi, and Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uppar, A.P., Vanti, G.L., Poondla, N., S, V., Kaulgud, R.S., Kurjogi, M.M. (2024). Applications of Extremophiles in Therapeutics. In: Shah, M.P., Dey, S. (eds) Trends in Biotechnology of Polyextremophiles. Springer, Cham. https://doi.org/10.1007/978-3-031-55032-4_10

Download citation

Publish with us

Policies and ethics

Navigation