Quantum Dots Nanocomposites as Drug Delivery Vehicle

  • Chapter
  • First Online:
Quantum Dots Based Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 78 Accesses

Abstract

Quantum dots nanocomposites (QDNCs) has triggered enormous interest in, its applications in various fields of medicine and pharmaceutical science due to its unique properties. While QDNCs has demonstrated suitable potential as an imaging probe in medical imaging, its application as a nano-vehicle in drug delivery system for drugs and biomolecules in biomedicine, has only begun to be consideration. Advanced nano-carriers with slow, controllable release and excellent carrier efficiency are now considered the ideal vehicle for develo** drug delivery systems. Remarkable properties of QDNCs include chemical stability, extremely large surface area, and low toxicity making it a promising material to design of novel drug delivery systems. Recent research has demonstrated significant success in the use of QDNCs for medical applications, including its utilization as a vehicle for controlled drug delivery, as well as in photothermal therapy, photodynamic therapy, and theranostic application. This chapter, presents a comprehensive overview of the current studies of drug delivery systems based on QDNCs vehicle. Moreover, various strategies for nano-vehicle design, functionalization methods for effective drug delivery, and reduction of quantum dots toxicity and the essential features for design of new Quantum dots nanocomposites vehicle in photothermal therapy, photodynamic therapy, and controlled drug delivery presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Silver

BBB:

Blood-Brain Barrier

BPQD:

Black Phosphorous quantum dots

BPQDs@Lipo:

Black Phosphorous quantum dots liposome composite

CdSe:

Cadmium Selenide

CSCs:

Cancer Stem Cells

CLSM:

Confocal Laser Scanning Microscope

CMOS:

Complementary Metal-Oxide-Semiconductor

CQD:

Carbon Quantum Dots

DAPI:

4′,6-Diamidino-2-phenylindole

DOX:

Doxorubicin

EPR:

Enhanced Permeability and Retention

FA:

Folic Acid

FAR:

Folate Receptors

FRET:

Förster Resonance Energy Transfer

GQD:

Graphene quantum dots

GOQD:

Graphene oxide quantum dots

HP:

HematoPorphyrin

IC50:

Inhibitory concentration

In:

Indium

InP:

Indium Phosphate

MAP:

Maximum Amplitude Projection

MDDS:

Multi Drug Delivery Systems

MoS2:

Molybdenum Disulfide

MUA:

Mercaptoundecanoic

NIR:

Near-Infrared

PA:

Photoacoustic

PDT:

Photodynamic Therapy

PEG:

Polyethylene glycol

PLGA:

Poly (lactic-co-glycolic acid)

PTT:

Photothermal Therapy

QD:

Quantum Dots

QDNC:

Quantum dots nanocomposites

R&D:

Research and Development

ROS:

Reactive Oxygen Species

S:

Sulfur

SOSG:

Singlet Oxygen Sensor Green

TDD:

Targeted Drug Delivery

WPU:

Waterborne polyurethane

Zn:

Zinc

ZnS:

Zinc Sulfide

ZnSe:

Zinc Selenide

References

  1. de Bono, J.S., Ashworth, A.: Translating cancer research into targeted therapeutics. Nature 467(7315), 543–549 (2010)

    Google Scholar 

  2. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Loretz, B., Jain, R., Dandekar, P., Thiele, C., Yamada, H., Mostaghaci, B., et al.: Chances of nanomaterials for pharmaceutical applications. Safety Aspects Eng. Nanomater. 279–317 (2013)

    Google Scholar 

  4. Das, P., Sherazee, M., Marvi, P.K., Ahmed, S.R., Gedanken, A., Srinivasan, S., Rajabzadeh, A.R.: Waste-derived sustainable fluorescent nanocarbon-coated breathable functional fabric for antioxidant and antimicrobial applications. ACS Appl. Mater. Interfaces 15(24), 29425–29439 (2023)

    Google Scholar 

  5. Kelf, T.A., Sreenivasan, V.K.A., Sun, J., Kim, E.J., Goldys, E.M., Zvyagin, A.V.: Non-specific cellular uptake of surface-functionalized quantum dots. Nanotechnology 21(28), 285105 (2010). https://doi.org/10.1088/0957-4484/21/28/285105

    Article  CAS  PubMed  Google Scholar 

  6. Torkashvand, H., Dehdast, S.A., Nateghpour, M., Haghi, A.M., Fard, G.C., Elmi, T., Shabani, M., Tabatabaie, F.: Antimalarial nano-drug delivery system based on graphene quantum dot on plasmodium falciparum: preparation, characterization, toxicological evaluation. Diamond Related Mater. 132, 109670 (2023)

    Google Scholar 

  7. Qiu, M., Wang, D., Liang, W., Liu, L., Zhang, Y., Chen, X., Sang, D.K., **ng, C., Li, Z., Dong, B., **ng, F., Fan, D., Bao, S., Zhang, H., Cao, Y.: Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U S A 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115. PMID: 29295927, PMCID: PMC5776980

  8. Shum, P., Kim, J.M., Thompson, D.H.: Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev. 53(3), 273–284 (2001). https://doi.org/10.1016/s0169-409x(01)00232-0. PMID: 11744172

    Article  CAS  PubMed  Google Scholar 

  9. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, RE., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U S A 100(23), 13549–54 (2003). https://doi.org/10.1073/pnas.2232479100. PMID: 14597719, PMCID: PMC263851

  10. Geng, S., Wu, L., Cui, H., Tan, W., Chen, T., Chu, P.K., Yu, X.-F.: Synthesis of lipid–black phosphorus quantum dot bilayer vesicles for near-infrared-controlled drug release. Chem. Commun. 54(47), 6060–6063 (2018). https://doi.org/10.1039/c8cc03423k

    Article  CAS  Google Scholar 

  11. Liu, L., Jiang, H., Dong, J., Zhang, W., Dang, G., Yang, M., Li, Y., Chen, H., Ji, H., Dong, L.: PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surf. B: Biointerfaces185, 110590. ISSN 0927-7765. https://doi.org/10.1016/j.colsurfb.2019.110590

  12. Su, W., Guo, R., Yuan, F., Li, Y., Li, X., Zhang, Y., Zhou, S., Fan, L.: Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J. Phys. Chem. Lett. 11(4), 1357–1363 (2020). https://doi.org/10.1021/acs.jpclett.9b03891

  13. Nigam, P., Waghmode, S., Louis, M., Wangnoo, S., Chavan, P., Sarkar, D.: Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mater. Chem. B 2(21), 3190–3195 (2014). https://doi.org/10.1039/c4tb00015c

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, M., Huang, L.L., Chen, J.H., Wu, J., Xu, Q.: The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct. Target Ther. 4, 61 (2019). https://doi.org/10.1038/s41392-019-0099-9. PMID: 31871778, PMCID: PMC6914774

  15. Ruzycka-Ayoush, M., Kowalik, P., Kowalczyk, A., et al.: Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nano 12, 8 (2021). https://doi.org/10.1186/s12645-021-00077-9

    Article  CAS  Google Scholar 

  16. Zeng, H., Qi, Y., Zhang, Z., Liu, C., Peng, W., Zhang, Y.: Nanomaterials toward the treatment of Alzheimer’s disease: recent advances and future trends. Chin. Chem. Lett. 32, 1857–1868 (2021)

    Google Scholar 

  17. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., Collin, F.: Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Qi, X., Ye, P., **e, M.: MoS2 quantum dots based on lipid drug delivery system for combined therapy against Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 82, 104324 (2023). ISSN 1773-2247. https://doi.org/10.1016/j.jddst.2023.104324

  19. Bao, X., Yuan, Y., Chen, J., et al.: In vivo theranostics with near-infrared-emitting carbon dots—Highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 7, 91 (2018). https://doi.org/10.1038/s41377-018-0090-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perini, G., Palmieri, V., Friggeri, G., et al.: Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nano 14, 13 (2023). https://doi.org/10.1186/s12645-023-00168-9

    Article  CAS  Google Scholar 

  21. Shao, J., **e, H., Huang, H., Li, Z., Sun, Z., Xu, Y., **ao, Q., Yu, X.F., Zhao, Y., Zhang, H., Wang, H., Chu, P.K.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 30(7), 12967 (2016). https://doi.org/10.1038/ncomms12967

    Article  CAS  Google Scholar 

  22. Dong, H., Tang, S., Hao, Y., Yu, H., Dai, W., Zhao, G., et al.: (2016). Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl. Mater. Interfaces 8(5), 3107–3114 (2016). https://doi.org/10.1021/acsami.5b10459

  23. Lu, F., Li, Z., Kang, Y., Su, Z., Yu, R., Zhang, S.: Black phosphorus quantum dots encapsulated in anionic waterborne polyurethane nanoparticles for enhancing stability and reactive oxygen species generation for cancer PDT/PTT therapy. J. Mater. Chem. B (2020). https://doi.org/10.1039/d0tb02101f

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan, Y., Tian, J., Hu, F., Wang, X., Shen, Z.: A near IR photosensitizer based on self-assembled CdSe quantum dot-aza-BODIPY conjugate coated with poly(ethylene glycol) and folic acid for concurrent fluorescence imaging and photodynamic therapy. RSC Adv. 6(115), 113991–113996 (2016). https://doi.org/10.1039/c6ra23113f

    Article  CAS  Google Scholar 

  25. Ahirwar, S., Mallick, S., Bahadur, D.: Photodynamic therapy using graphene quantum dot derivatives. J. Solid State Chem. 282, 121107 (2020). ISSN 0022-4596. https://doi.org/10.1016/j.jssc.2019.121107

  26. Murali, G., Kwon, B., Kang, H., Modigunta, J.K.R., Park, S., Lee, S., Lee, H., Park, Y.H., Kim, J., Park, S.Y., Kim, Y.J.: Hematoporphyrin photosensitizer-linked carbon quantum dots for photodynamic therapy of cancer cells. ACS Appl. Nano Mater. 5(3), 4376–4385 (2022). https://doi.org/10.1021/acsanm.2c00443

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Dehdast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dehdast, S.A., Pourdakan, O. (2024). Quantum Dots Nanocomposites as Drug Delivery Vehicle. In: Thomas, S., Das, P., Ganguly, S. (eds) Quantum Dots Based Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-54779-9_16

Download citation

Publish with us

Policies and ethics

Navigation