Microbial Community Structure in Hydrothermal Sediments: The Guaymas Basin Field Site

  • Chapter
  • First Online:
Geomicrobiology: Natural and Anthropogenic Settings
  • 133 Accesses

Abstract

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, hydrothermal activity, and organic matter accumulation on the seafloor due to high sedimentation rates. In the hydrothermal sediments of Guaymas Basin, microbial community compositions and coexistence patterns change across steep gradients of temperature, potential carbon sources, and electron acceptors. After introducing the geological and geochemical context, this chapter discusses the phylogenetic diversity, temperature range, and occurrence patterns of characteristic bacteria and archaea in the hydrothermal sediments of Guaymas Basin. Here, ample carbon substrates, nutrients, and energy-rich redox couples coexist within dynamic thermal gradients and sustain uncommonly diverse microbial communities. The availability of sulfate, introduced via hydrothermal circulation, favors in particular sulfate-reducing bacteria and archaea, and sulfate-reducing, methane- and alkane-oxidizing microbial consortia; perhaps no other site has yielded such a wide range of thermophilic, hydrocarbon-degrading specialists. Guaymas Basin continues to yield microbiological discoveries, for example novel types of Asgardarchaeota. This archaeal lineage gave rise to the early ancestors of eukaryotic cells and retains genomic and biochemical similarities to modern eukaryotes. In analogy to Jurassic Park, Guaymas Basin serves as an Archaeal Park where microbiologists may search for evolutionary “missing links” that thrive in this primordial habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antranikian G, Suleiman M, Schäfers C et al (2017) Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles 21:733–742

    Article  PubMed  Google Scholar 

  • Baker ET, Resing JA, Haymon RM et al (2016) How many vent fields? New estimates of vent field populations on ocean ridges from precise map** of hydrothermal discharge locations. Earth Planet Sci Lett 449:186–196

    Article  CAS  Google Scholar 

  • Bazylinski DA, Farrington JW, Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org Geochem 12:547–558

    Article  CAS  Google Scholar 

  • Beaulieu SE, Szafranski KM (2020) InterRidge Global Database of active submarine hydrothermal vent fields, V. 3.4. PANGAEA. https://doi.org/10.1594/PANGAEA.917894

    Book  Google Scholar 

  • Beaulieu SE, Baker ET, German CR (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep-Sea Res II Top Stud Oceanogr 121:202–212

    Article  Google Scholar 

  • Benito Merino D, Zehnle H, Teske A et al (2022) Deeply-branching ANME-1c archaea grow at the upper temperature limit of the anaerobic oxidation of methane. Front Microbiol 13:988871

    Article  PubMed  PubMed Central  Google Scholar 

  • Berndt C, Hensen C, Mortera-Gutierrez C et al (2016) Rifting under steam—how magmatism triggers methane venting from sedimentary basins. Geology 44:767–770

    Article  CAS  Google Scholar 

  • Biddle JF, Cardman Z, Mendlovitz H et al (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6:1018–1031

    Article  CAS  PubMed  Google Scholar 

  • Bojanova DP, De Anda VY, Haghnegahdar MA, IODP Expedition 385 Scientists et al (2023) Well-hidden Methanogenesis in deep, organic-rich sediments of Guaymas Basin, Gulf of California. ISME J 17:1828–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley A, MacGregor BJ, Teske A (2019) Identification, expression and activity of candidate nitrite reductases from orange Beggiatoaceae, Guaymas Basin. Front Microbiol 10:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvert SE (1966) Origin of diatom-rich varved sediments from the Gulf of California. J Geol 76:546–565

    Article  Google Scholar 

  • Castro SP, Borton MA, Regan K et al (2021) Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME J 15:3480–3497

    Article  Google Scholar 

  • Cruaud P, Vigneron A, Pignet P et al (2017) Comparative study of Guaymas Basin microbiomes: cold seeps vs. hydrothermal vents sediments. Front Mar Sci 4:417

    Article  Google Scholar 

  • Dalzell CJ, Ventura GT, Walters CC et al (2021) Hydrocarbon transformations in sediments from the Cathedral Hill hydrothermal vent complex at Guaymas Basin, Gulf of California—a chemometric study of shallow seep architecture. Org Geochem 152:104173

    Article  CAS  Google Scholar 

  • De Beer D, Ferdelman T, MacGregor BJ et al (2020) Growth patterns of giant deep sea Beggiatoaceae from a Guaymas Basin vent site. In: Teske A, Carvalho V (eds) Marine hydrocarbon seeps—microbiology and biogeochemistry of a global marine habitat. Springer, pp 173–181

    Chapter  Google Scholar 

  • De la Lanza-Espino G, Soto LA (1999) Sedimentary geochemistry of hydrothermal vents in Guaymas Basin, Gulf of California, Mexico. Appl Geochem 14:499–510

    Article  Google Scholar 

  • Dhillon A, Lever M, Lloyd K et al (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes (mcrA) in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71:4592–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dombrowski N, Seitz KW, Teske AP et al (2017) Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5:1–13

    Article  Google Scholar 

  • Dombrowski N, Teske AP, Baker BJ (2018) Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun 9:4999

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowell F, Cardman Z, Dasarathy S et al (2016) Microbial communities in methane and short alkane-rich hydrothermal sediments of Guaymas Basin. Front Microbiol 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP, Teske AP, Mara P (2022) Microbial hydrocarbon degradation in Guaymas Basin—exploring the roles and potential interactions of fungi and sulfate-reducing bacteria. Front Microbiol 13:831828

    Article  PubMed  PubMed Central  Google Scholar 

  • Einsele G, Gieskes JM, Curray et al (1980) Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature 283:441–445

    Article  CAS  Google Scholar 

  • Elsgaard L, Isaksen MF, Jørgensen BB et al (1994) Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343

    Article  CAS  Google Scholar 

  • Eme L, Spang A, Lombard J et al (2017) Archaea and the origin of eukaryotes. Nat Rev Microbiol 15:711–723

    Article  CAS  PubMed  Google Scholar 

  • Eme L, Tamarit D, Caceres EF et al (2023) Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618:992–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelen B, Nguyen T, Heyerhoff B et al (2021) Microbial communities of hydrothermal Guaymas Basin surficial sediment profiled at 2 millimeter-scale resolution. Front Microbiol 12:710881

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng XY, Wang YZ, Zubin R, Wang FP (2019) Core metabolic features and hot origin of Bathyarchaeota. Engineering 5:498–504

    Article  CAS  Google Scholar 

  • Galimov EM, Simoneit BRT (1982) Geochemistry of interstitial gases in sedimentary deposits of the Gulf of California, deep sea drilling project leg 64. In: Curray JR, Blakeslee J, Platt LW et al (eds) Initial reports of the deep sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 781–787

    Google Scholar 

  • Geilert S, Hensen C, Schmidt M et al (2018) On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California. Biogeosciences 15:5715–5731

    Article  CAS  Google Scholar 

  • Gieskes JM, Kastner M, Einsele G et al (1982) Hydrothermal activity in the Guaymas Basin, Gulf of California: a synthesis. In: Curray JR, Blakeslee J, Platt LW et al (eds) Initial reports of the deep sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 1159–1167

    Google Scholar 

  • Goetz FE, Jannasch HW (1993) Aromatic hydrocarbon-degrading bacteria in the petroleum-rich sediments of the Guaymas Basin hydrothermal vent site: preference for aromatic carboxylic acids. Geomicrobiol J 11:1–18

    Article  CAS  Google Scholar 

  • Goffredi SK et al (2017) Hydrothermal vent fields discovered in the southern Gulf of California clarify role of habitat in augmenting regional diversity. Proc R Soc B 284:20170817

    Article  PubMed  PubMed Central  Google Scholar 

  • Gugliandolo C, Maugeri TL (2019) Phylogenetic diversity of archaea in shallow hydrothermal vents of Eolian Islands, Italy. Diversity 11:156

    Article  CAS  Google Scholar 

  • Gutierrez T, Biddle JF, Teske A et al (2015) Cultivation-dependent and cultivation- independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Front Microbiol 6:695

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn CJ, Laso-Pérez R, Volcano F et al (2020) “Candidatus Ethanoperedens”, a thermophilic genus of Archaea mediating the anaerobic oxidation of ethane. MBio 11:e00600–e00620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn CJ, Lemaire ON, Kahnt J et al (2021) Crystal structure of a key enzyme for anaerobic ethane activation. Science 373:118–121

    Article  CAS  PubMed  Google Scholar 

  • Holler T, Widdel F, Knittel K et al (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F et al (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Jørgensen BB, Zawacki LX, Jannasch HW (1990) Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vents (Gulf of California). Deep-Sea Res I 37:695–710

    Article  Google Scholar 

  • Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent systems. Science 258:1756–1757

    Article  PubMed  Google Scholar 

  • Kastner M (1982) Evidence for two distinct hydrothermal systems in the Guaymas Basin. In: Curray JR, Blakeslee J, Platt LW et al (eds) Initial reports of the deep-sea drilling project. U.S. Government Printing Office, Washington, DC, pp 1143–1158

    Google Scholar 

  • Kniemeyer O, Musat F, Sievert SM et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901

    Article  CAS  PubMed  Google Scholar 

  • Krukenberg V, Harding K, Richter M et al (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091

    Article  CAS  PubMed  Google Scholar 

  • Krukenberg V, Riedel D, Gruber-Vodicka HR et al (2018) Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol 20:1651–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurr M, Huber R, König H et al (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247

    Article  CAS  Google Scholar 

  • Lagostina L, Frandsen S, MacGregor B et al (2021) Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Commun Biol 4:1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laso-Pérez R, Wegener G, Knittel K et al (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401

    Article  PubMed  Google Scholar 

  • Le Moine Bauer S, Lu G-S, Goulaouic S et al (2023) Structure and metabolic potential of the prokaryotic communities from the hydrothermal system of Paleochori Bay, Milos, Greece. Front Microbiol 13:1060168

    Article  PubMed  PubMed Central  Google Scholar 

  • Lever MA, Teske AP (2015) Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microbiol 81:1426–1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang R, Davidova IA, Teske A et al (2023) Evidence for the anaerobic biodegradation of higher molecular weight hydrocarbons in the Guaymas Basin. Int Biodeterior Biodegrad 181:105621

    Article  CAS  Google Scholar 

  • Lizarralde D, Soule A, Seewald J et al (2011) Carbon release by off-axis magmatism in a young sedimented spreading centre. Nat Geosci 4:50–54

    Article  CAS  Google Scholar 

  • Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet Sci Lett 73:211–225. https://doi.org/10.1016/0012-821X(85)90070-6

  • Lu GS, LaRowe DE, Fike DA et al (2020) Bioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece. PLoS One 15:e0234175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacGregor BJ, Biddle JF, Siebert JR et al (2013) Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol 79:1183–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mara P, Nelson RK, Reddy CM et al (2022) Sterane and hopane biomarkers capture microbial transformations of complex hydrocarbons in hydrothermal Guaymas Basin sediments. Nat Commun Earth Environ 3:250

    Article  Google Scholar 

  • Mara P, Zhou Y, Teske A et al (2023) Microbial gene expression in Guaymas Basin subsurface sediments responds to hydrothermal stress and energy limitation. ISME J 17:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Martens CS (1990) Generation of short chain acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl Geochem 5:71–76

    Article  CAS  Google Scholar 

  • McKay LJ, MacGregor BJ, Biddle JF et al (2012) Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments. Deep-Sea Res I Oceanogr Res Pap 67:21–31

    Article  CAS  Google Scholar 

  • McKay LJ, Klokman V, Mendlovitz H et al (2016) Thermal and geochemical influences on microbial biogeography in the hydrothermal sediments of Guaymas Basin. Environ Microbiol Rep 8:150–161

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Wegener G, Lloyd KG et al (2013) Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 4:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann F, Negrete-Aranda R, Harris RN et al (2023) Heat flow and thermal regime in the Guaymas Basin, Gulf of California: estimates of conductive and advective heat transport. Basin Res. Early online version. https://doi.org/10.1111/bre.12755

  • Nobu MK, Narihiro T, Kuroda K et al (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ondréas H, Scalabrin C, Fouquet Y et al (2018) Recent high-resolution map** of Guaymas hydrothermal fields (Southern Trough). BSGF—Earth Sci Bull 189:6

    Article  Google Scholar 

  • Oremland RS, Culbertson C, Simoneit BRT (1982) Methanogenic activity in sediment from Leg 64, Gulf of California. In: Curray JR, Moore DG et al (eds) Initial reports of the deep-sea drilling project, 64. U.S. Government Printing Office, Washington, DC, pp 759–762

    Google Scholar 

  • Pearson A, Seewald JS, Eglinton TI (2005) Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim Cosmochim Acta 69:5477–5486

    Article  CAS  Google Scholar 

  • Peter JM, Peltonen P, Scott SD et al (1991) 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: implications for oil generation, expulsion, and migration. Geology 19:253–256

    Article  CAS  Google Scholar 

  • Price RE, Giovanelli D (2017) A review on the geochemistry and microbiology of marine shallow-water hydrothermal vents. In: Reference module in earth systems and environmental sciences. Elsevier, pp 1–28. https://doi.org/10.1016/B978-0-12-409548-9.09523-3

    Chapter  Google Scholar 

  • Qi Y-L, Evans PN, Li Y-X et al (2021) Comparative genomics reveals thermal adaptation and a high metabolic diversity in “Candidatus Bathyarchaeia”. MSystems 6:e00252–e00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez GA, McKay LJ, Fields MW et al (2020) The Guaymas Basin subseafloor sedimentary archaeome reflects complex environmental histories. IScience 23:101459

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez GA, Mara P, Sehein T et al (2021) Environmental factors sha** bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS One 16:e0256321

    Article  PubMed  PubMed Central  Google Scholar 

  • Rullkötter J, von der Dick H, Welte DH (1982) Organic petrography and extractable hydrocarbons of sediment from the Gulf of California, deep sea drilling project leg 64. In: Curray JR, Blakeslee J, Platt LW et al (eds) Initial reports of the deep sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 837–853

    Google Scholar 

  • Rüter P, Rabus R, Wilkes H et al (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458

    Article  Google Scholar 

  • Schrader H (1982) Diatom biostratigraphy and laminated diatomaceous sediments from the Gulf of California, deep sea drilling project leg 64. In: Curray JR, Blakeslee J, Platt LW et al (eds) Initial reports of the deep sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 973–981

    Google Scholar 

  • Schutte C, Teske A, MacGregor B et al (2018) Filamentous giant Beggiatoaceae from Guaymas Basin are capable of both denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Appl Environ Microbiol 84:e02860-17. https://doi.org/10.1128/AEM.02860-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Seitz KW, Dombrowski N, Eme L et al (2019) Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 10:1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Simoneit BRT (1985) Hydrothermal petroleum: genesis, migration and deposition in Guaymas Basin, Gulf of California. Can J Earth Sci 22:1919–1929

    Article  CAS  Google Scholar 

  • Simoneit BRT, Lonsdale PF (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295:198–202

    Article  CAS  Google Scholar 

  • Simoneit BRT, Summerhayes CP, Meyers PA (1986) Sources and hydrothermal alteration of organic matter in Quaternary sediments: a synthesis of studies from the central Gulf of California. Mar Pet Geol 3:282–297

    Article  CAS  Google Scholar 

  • Simoneit BRT, Oros DR, Leif RN et al (2019) Weathering and biodegradation of hydrothermal petroleum in the north rift of Guaymas Basin, Gulf of California. Rev Mex Cienc Geol 36:159–176

    Article  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Teske A, MacGregor BJ et al (2023) Thermal selection of microbial communities and preservation of microbial function in Guaymas Basin hydrothermal sediments. Appl Environ Microbiol 89(3):e0001823

    Article  PubMed  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasov VG, Gebruk AV, Mironov AN et al (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem Geol 224:5–39

    Article  CAS  Google Scholar 

  • Teske A (2024) The Guaymas Basin—a hot spot for hydrothermal generation and anaerobic microbial degradation of hydrocarbons. Int Biodeterior Biodegradation 186:105700

    Article  CAS  Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V et al (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teske A, Callaghan AV, LaRowe DE (2014) Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol 5:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Teske A, de Beer D, McKay L et al (2016) The Guaymas Basin hiking guide to hydrothermal mounds, chimneys and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front Microbiol 7:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Teske A, McKay LJ, Ravelo AC et al (2019) Characteristics and evolution of sill-driven off-axis hydrothermalism in Guaymas Basin—the Ringvent site. Sci Rep 9:13847

    Article  PubMed  PubMed Central  Google Scholar 

  • Teske A, Wegener G, Chanton JP et al (2021a) Microbial communities under distinct thermal and geochemical regimes in axial and off-axis sediments of Guaymas Basin. Front Microbiol 12:633649

    Article  PubMed  PubMed Central  Google Scholar 

  • Teske A, Lizarralde D, Höfig TW et al (2021b) Expedition 385 summary. In: Teske A, Lizarralde D, Höfig TW, the Expedition 385 Scientists (eds) Guaymas Basin tectonics and biosphere. Proceedings of the International Ocean Discovery Program, 385. International Ocean Discovery Program, College Station. https://doi.org/10.14379/iodp.proc.385.101.2021

    Chapter  Google Scholar 

  • Van Andel TH, Shor GG (1963) Marine geology of the Gulf of California, vol 3. American Association of Petroleum Geologists Memoir, Tulsa

    Google Scholar 

  • Van Dover CL (2019) Forty years of fathoming life in hot springs on the ocean floor. Nature 567:182–184

    Article  PubMed  Google Scholar 

  • Vigneron A, Cruaud P, Roussel EG et al (2014) Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin. PLoS One 9:e104427

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Damm KL, Edmond JM, Measures CI et al (1985) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49:2221–2237

    Article  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D et al (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Laso-Pérez R, Orphan VJ et al (2022) Anaerobic degradation of alkanes by marine archaea. Ann Rev Microbiol 76:553–577

    Article  CAS  Google Scholar 

  • Yücel M, Sievert SM, Vetriani C et al (2013) Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean). Chem Geol 356:11–20

    Article  Google Scholar 

  • Zaremba-Niedzwiedzka K, Caceres E, Saw J et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358

    Article  CAS  PubMed  Google Scholar 

  • Zehnle H, Laso-Pérez R, Lipp J et al (2023) Candidatus ‘Alkanophaga’ archaea from heated hydrothermal vent sediment oxidize petroleum alkanes. Nat Microbiol 8:1199–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang GF, Elling LM, Nigro V et al (2016) Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta 187:1–20

    Article  CAS  Google Scholar 

  • Zhuang G-C, Heuer VB, Lazar CS et al (2018) Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta 224:171–186

    Article  CAS  Google Scholar 

  • Zhuang G, Montgomery A, Samarkin VA et al (2019) Generation and utilization of volatile fatty acids and alcohols in hydrothermally altered sediments in the Guaymas Basin, Gulf of California. Geophys Res Lett 46:2637–2646

    Article  CAS  Google Scholar 

  • Ziervogel K, Arnosti C (2020) Substantial carbohydrate hydrolase activities in the water column of the Guaymas Basin (Gulf of California). Front Mar Sci 6:815

    Article  Google Scholar 

Download references

Funding Acknowledgment

Current research on Guaymas Basin in the Teske Lab is supported by NSF (BIO-OCE 2048489) and NASA Exobiology (Award A22-0244-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas P. Teske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teske, A.P. (2024). Microbial Community Structure in Hydrothermal Sediments: The Guaymas Basin Field Site. In: Staicu, L.C., Barton, L.L. (eds) Geomicrobiology: Natural and Anthropogenic Settings. Springer, Cham. https://doi.org/10.1007/978-3-031-54306-7_12

Download citation

Publish with us

Policies and ethics

Navigation