Tropical Dry Forests in Multifunctional Landscapes: Agroforestry Systems for Conservation and Livelihoods

  • Chapter
  • First Online:
Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty

Part of the book series: Advances in Agroforestry ((ADAG,volume 14))

  • 33 Accesses

Abstract

Conservation and restoration of dry tropical forests is a high priority because they are becoming increasingly rare and contain many endemic and economically valuable species. At the same time, humanity’s increasing demand for food and fuel puts pressure on ecosystems around the world. Effective strategies are urgently needed to balance biodiversity conservation and agricultural production. One potential strategy is to increase food production per unit area (yield) on existing farmland, so as to minimize farmland area and to spare land for habitat conservation or restoration. However, achieving a sustainable future for agriculture will involve more than just intensifying production. Instead, it is necessary to take a more holistic view of a problem that encompasses the need for improved soil fertility and health; reduced risk of pests, diseases, and weed outbreaks; improved rural and urban livelihoods; increased climate change resiliency; and opportunities for economic growth. This chapter provides a series of successful experiences in tropical dry regions of Latin America where productive agriculture achieves food security, biodiversity conservation, and climate change resiliency using appropriate agricultural practices that support functioning agroecosystems. The case studies presented here range from traditional homegardens and silvopastures of smallholder farmers to intensive silvopastoral and taungya systems of large landholders in dry regions of Latin America. This chapter ends by exposing the opportunities and challenges of adopting agroforestry systems in Latin America. The conversion of degraded, simplified production systems to diverse, agroecological, resilient systems is challenging, and the scaling-up of these systems will require a combination of scientific and technological innovation, policy, economic, and market incentives tailored to different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As defined by the United Nations Climate Change Secretariat, land use, land use change, and forestry (LULUCF) is “A greenhouse gas inventory sector that covers emissions and removals of greenhouse gases resulting from direct human-induced land use, land-use change and forestry activities.”

  2. 2.

    According to Ashton and Kelty (2017), the traditional system of agriculture used originally across both temperate and tropical forest climates is called swidden agriculture, or shifting cultivation. It has been derogatorily termed “slash and burn.” The natural forest vegetation is cut and burned, a crop such as maize or beans is grown for two or three cycles, and then the area is left fallow. Forest vegetation is allowed to develop, and soil nutrient stocks build up from atmospheric inputs, or in the case of nitrogen, from biological fixation. The native populations of soil organisms recover, and insects, fungi, and other pest species decline with the absence of their crop hosts. The develo** tree canopy also shades out agricultural weeds. Food is grown on alternate plots until the fallow site has been restored to a condition suitable for clearing and crop** again. The ratio of fallow period to crop** period that is needed on a site varies with climate and soil conditions, but is frequently on the order of 10:1 (Ramakrishnan et al. 1992; Cairns and Garrity 1999). Thus, this system requires a good deal of land.

  3. 3.

    Currently, there are 11 countries, 3 states, and 4 NGOs participating in the Initiative 20×20, committing a total of about 27.7 million hectares to place into restoration by 2020. The countries include Chile, Argentina, Brazil, Ecuador, Peru, Colombia, Costa Rica, Nicaragua, Honduras, El Salvador, Guatemala, and Mexico.

  4. 4.

    Local average productivity of meat is 74 kg ha−1 year−1, and the Latin American average is 19.9 kg ha−1 year−1 (Mahecha et al. 2002).

  5. 5.

    In this region mature cheeses have geographical designation of origin (Cotija cheese type) greatly appreciated in local markets.

  6. 6.

    The establishment and maintenance of pastures with electric fencing, rotational grazing, livestock water supply, irrigation, and fertilization is the most appropriate comparison because it’s the closer option to the stocking density and productivity in meat or milk of the ISS.

  7. 7.

    A common practice of smallholder farmers in the dry regions of Honduras and Nicaragua is to manage their land on a cyclical basis: alternating between periods of food crop production, cattle grazing, and fallow to recuperate degraded land.

  8. 8.

    Each landscape comprising an area of approximately 12,000 ha.

  9. 9.

    PRORENA (Proyecto de Reforestación con Especias Nativas), a research initiative of Yale University and the Smithsonian Tropical Research Institute (STRI) to examine ways to more effectively approach Panama’s reforestation process.

  10. 10.

    The total volume of wood is estimated to be 30% lower than in conventional plantations, but this reduction is offset by the increased price of timber at final harvest. In SPS, thinning and pruning are designed to maximize diameters above 30 cm, increasing the volume of high-priced timber by 50% (Esquivel et al. 2010).

  11. 11.

    In regions with a well-developed timber industry and market of value-added wood, this increase would be greater (Colcombet et al. 2009).

  12. 12.

    Cajanus cajan is a shrubby species whose beans are frequently used in Latin America for food, while the leaves and branches can be used as green manure. A few studies have shown that when planted with forest tree seedlings, it increases tree survival and growth compared with planting trees alone (Silva 2002; Beltrame and Rodrigues 2007).

  13. 13.

    Haiti remains the poorest country in the Americas and one of the poorest in the world (with a GDP per capita of US$846 in 2014) (World Bank 2016).

  14. 14.

    Phenology of trees, in terms of when they provide shade as well as fodder from leaves and pods or fruits, is of critical importance in the design of appropriate mixtures of species in silvopastoral systems.

  15. 15.

    This project was designed to test whether Payment for Environmental Services (PES) is an appropriate tool to promote the transition from conventional cattle ranching to silvopastoral systems. Funded by The Global Environment Facility and administered by the World Bank, the project took place between 2002 and 2007 in three regions of Colombia, Costa Rica, and Nicaragua.

References

  • Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    Article  Google Scholar 

  • Ashton MS, Kelty MJ (2017) The practice of silviculture: applied forest ecology, 10th edn. Wiley, New York, 840 pp

    Google Scholar 

  • Ashton MS, Montagnini F (eds) (2000) The silvicultural basis for agroforestry systems. CRC Press, Boca Raton, 278 pp

    Google Scholar 

  • Barrance AJ, Flores L, Padilla E, Gordon JE, Schreckenberg K (2003) Trees and farming in the dry zone of southern Honduras I: campesino tree husbandry practices. Agrofor Syst 59:97–106

    Google Scholar 

  • Barrance A, Schreckenberg K, Gordon J (2009) Conservación mediante el uso: Lecciones aprendidas en el bosque seco tropical mesoamericano. Overseas Development Institute, Londres, 142 pp

    Google Scholar 

  • Beer J, Ibrahim M, Schlönvoigt A (2000) Timber production in tropical agroforestry systems of central America. In: Proceedings of XXI IUFRO world congress. IUFRO, Kuala Lumpur, MY, pp 777–786

    Google Scholar 

  • Beltrame TP, Rodrigues E (2007) Feijão guandu (Cajanus cajan (L.) Millsp.) na restauração de florestas tropicais. Semina Ciênc Agrár 28:19–28

    Article  Google Scholar 

  • Blanckaert I, Swennen RL, Paredes-Flores M, Rosas-López R, Lira-Saade R (2004) Floristic composition, plant uses and management practices in homegardens of San Rafael Coxcatlán, valley of Tehuacán-Cuicatlán, Mexico. J Arid Environ 57:179–202

    Article  Google Scholar 

  • Cairns M, Garrity DP (1999) Improving shifting cultivation in Southeast Asia by building on indigenous fallow management strategies. Agrofor Syst 47:37–48

    Article  Google Scholar 

  • Cajas-Giron YS, Sinclair FL (2001) Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst 53:215–225

    Article  Google Scholar 

  • Calle Z (2007) Fodder banks as tools for the ecological restoration of tropical forests. In: Leterme P, Buldgen A, Murgueitio E, Cuartas C (eds) Fodder banks for sustainable pig production systems. Gembloux Faculté Universitaire des Sciences Agronomiques, CIPAV, IAEA, Universidad Nacional de Colombia, CUD, Cali, pp 103–119

    Google Scholar 

  • Calle Z, Chará J (2013) Sistemas Silvopastoriles Intensivos: Integración de la Ganadería Sostenible, la Silvicultura y la Restauración a la Escala del Paisaje. Memorias del Simposio realizado en el marco del III Congreso Iberoamericano y del Caribe de Restauración Ecológica: Restauración Ecológica y Agropaisajes Sostenibles. Organizado por la Iniciativa de Liderazgo y Capacitación Ambiental (ELTI) y el Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV). Julio 30 de 2013 Bogotá, Colombia

    Google Scholar 

  • Calle Z, Guariguata MR, Giraldo E, Chará J (2010) La producción de maracuyá (Passiflora edulis) en Colombia: perspectivas para la conservación del hábitat a través del servicio de polinización. Interciencia 35(3):207–212

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattleranching and landscape restoration. Unasylva 239:31–40

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling-up intensive Silvopastoral systems in Colombia. J Sustain For 32:677–693

    Article  Google Scholar 

  • Chambers R (2013) Rural development: putting the last first. Routledge, New York, 356 pp

    Google Scholar 

  • Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de sistemas silvopastoriles intensivos: mejoramiento del suelo y restauración ecológica. In: Montagnini F (ed) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. CIPAV/CATIE, Cali/Turrialba, pp 331–348

    Google Scholar 

  • Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, van Breugel M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41:142–153

    Article  Google Scholar 

  • Colcombet L, Pachas N, Carvallo A (2009) Evolución de sistemas silvopastoriles de Pinus elliottii – Brachiaria brizantha y Penisetum purpureum en predios de pequeños productores en el NE de Misiones, Argentina. Actas, 1° Congreso Nacional de Sistemas Silvopastoriles. [Posadas, Misiones, Argentina, 14–16 mayo 2009], pp 239–245

    Google Scholar 

  • Córdoba CP, Cuartas CA, Naranjo JF, Murgueitio E (2011) Producción de biomasa forrajera en diferentes sistemas silvopastoriles intensivos en temporadas de lluvias y sequía en la región del Caribe de Colombia. En: Memorias III Congreso sobre Sistemas Silvopastoriles Intensivos para la Ganadería Sostenible del siglo XXI. Morelia y Tepalcatepec, Michoacán. 3,4 y 5 de marzo de 2011. Fundación Produce Michoacán, Universidad Autónoma de Yucatán, Fundación CIPAV. Morelia, Michoacán, México, pp 253–254

    Google Scholar 

  • Dagang AB, Nair PKR (2003) Silvopastoral research and adoption in central America: recent findings and recommendations for future directions. Agrofor Syst 59:149–155

    Article  Google Scholar 

  • Daily GC, Ceballos G, Pacheco J, Suzán G, Sánchez-Azofeifa A (2003) Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17:1814–1826

    Article  Google Scholar 

  • Dalzell SA, Shelton HM, Mullen BF, Larsen PH, McLaughin KG (2006) Leucaena: a guide to establishment and management. Meat and Livestock Australia Ltd, Sydney, p 70

    Google Scholar 

  • Detlefsen G, Somarriba E (2015) Producción agroforestal de madera en fincas agropecuarias de Centroamérica. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales, Serie técnica, Informe técnico, vol 402. CATIE/Editorial CIPAV, Cali/Turrialba, pp 21–43

    Google Scholar 

  • Diemont SAW, Martin JF, Levy-Tacher SI, Nigh RB, Lopez PR, Golicher JD (2006) Lacandon Maya forest management: restoration of soil fertility using native tree species. Ecol Eng 28:205–212

    Article  Google Scholar 

  • Escalante E, Guerra A (2015) Sistemas Taungya en plantaciones de especies forestales de alto valor comercial en Venezuela. En: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales. Serie técnica, Informe técnico 402, CATIE/Editorial CIPAV, Cali/Turrialba, pp 45–58

    Google Scholar 

  • Esquivel MJ, Harvey CA, Finegan B, Casanoves F, Skarpe C, Nieuwenhuyse A (2009) Regeneración natural de árboles y arbustos en potreros activos de Nicaragua. Agroforestería en las Américas 47:76–84

    Google Scholar 

  • Esquivel J, Lacorte S, Goldfarb C, Fassola H, Colcombet L, Pachas N (2010) Sistemas silvopastoriles con especies maderables en la República de Argentina (en línea) En: Ibrahim M, Murgueitio E (eds) Actas, VI Congreso Latinoamericano de Agroforestería para la Producción Pecuaria Sostenible [Panamá, Panamá, 28–30 sept. 2010]. Disponible en: http://www.cipav.org.co/red_de_agro/Panama2010.html

  • Faria D, Baumgarten J (2007) Shade cacao plantations (Theobroma cacao) and bat conservation in southern Bahia, Brazil. Biodivers Conserv 16:291–312

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2002) The conservation value of paddock trees for birds in a variegated landscape in southern New South Wales. 2. Paddock trees as step** stones. Biodivers Conserv 11:833–849

    Article  Google Scholar 

  • Fischer J, Brosi B, Daily GC, Ehrlich PR, Goldman R, Goldstein J, Lindenmayer DB, Manning AD, Mooney AH, Pejchar L, Ranganathan J, Tallis H (2008) Should agricultural policies encourage land sparing or wildlife-friendly farming? Front Ecol Environ 6:380–385

    Article  Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011a) Living fences as linear extensions of forest remnants: a strategy for restoration of connectivity in agricultural landscapes. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 115–126

    Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011b) Using bird distribution to evaluate the potential of living fences to restore landscape connectivity in pasturelands. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 133–142

    Google Scholar 

  • Garen EJ, Saltonstall K, Slusser JL, Mathias S, Ashton MS, Hall JS (2009) An evaluation of farmers’ experiences planting native trees in rural Panama: implications for reforestation with native species in agricultural landscapes. Agrofor Syst 76:219–236

    Article  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229

    Article  Google Scholar 

  • Giraldo C, Escobar F, Chará JD, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Divers 4:115–122

    Article  Google Scholar 

  • Goldstein JH, Daily GC, Friday JB, Naylor RL, Vitousek P (2006) Business strategies for conservation on private lands: Koa forestry as a case study. Proc Natl Acad Sci USA 103:S10140–S10145

    Google Scholar 

  • González MO (2006) Conocimiento local y decisiones de los productores de Alto Beni, Bolivia, sobre el diseño y manejo de la sombra en sus cacaotales. M.S. thesis, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica

    Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JP, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review of pattern and process. For Ecol Manage 261:1564–1579

    Article  Google Scholar 

  • Griscom HP, Griscom BW, Ashton PMS (2009) Forest regeneration from pasture in the dry tropics of Panama: effects of cattle, exotic grass, and forested riparia. Restor Ecol 17:117–126

    Article  Google Scholar 

  • Guevara S, Purata S, van der Maarel E (1986) The role of remnant forest trees in tropical secondary succession. Vegetatio 66:77–84

    Article  Google Scholar 

  • Guevara S, Laborde J, Sánchez G (1998) Are isolated remnants trees in pastures a fragmented canopy? Selbyana 19:34–43

    Google Scholar 

  • Guggenberger L, Haumaier L, Thomas RJ, Zech W (2000) Assessing the organic phosphorus status of an oxisol under tropical pastures following native savanna, using 31P NMR spectroscopy. Biol Fertil Soils 23:332–339

    Article  Google Scholar 

  • Hall JS, Love BE, Garen EJ, Slusser JL, Saltonstalla K, Mathias S, van Breugel M, Ibarra D, Bork EW, Spaner D, Wishnie MH, Ashton MS (2011) Tree plantations on farms: evaluating growth and potential for success. For Ecol Manag 261:1675–1683

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century Forest cover change. Science 342:850–853 Harvey CA, Haber WH (1999) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agrofor Syst 44:37–68

    Google Scholar 

  • Harvey CA, Haber WH (1999) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agrofor Syst 44:37–68

    Article  Google Scholar 

  • Harvey CA, Medina A, Sánchez D, Vílchez S, Hernández B, Saénz J, Maes JM, Casanoves F, Sinclair FL (2006) Patterns of animal diversity associated with different forms of tree cover retained in agricultural landscapes. Ecol Appl 16:1986–1999

    Article  PubMed  Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot: opportunities and an action agenda. Conserv Biol 22:8–15

    Article  PubMed  Google Scholar 

  • Harvey CA, Villanueva C, Esquivel H, Gómez R (2011) Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manag 261:1664–1674

    Article  Google Scholar 

  • Holl KD (1998) Effects of above and below ground competition of shrubs and grass on Calophyllum brasiliense seedling growth in abandoned tropical pasture. For Ecol Manag 109:187–195

    Article  Google Scholar 

  • Holl KD (1999) Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica 31:229–242

    Article  Google Scholar 

  • Ibrahim M, Camargo JC (2001) ¿Cómo aumentar la regeneración de árboles maderables en potreros? Agroforestería en las Américas 8:35–41

    Google Scholar 

  • Ibrahim M, Chacón M, Cuartas C, Naranjo J, Ponce G, Vega P, Casasola F, Rojas J (2007) Carbon storage in soil and biomass in land use systems of ranchlands of Colombia, Costa Rica and Nicaragua. Agroforestería en las Américas 4:27–36

    Google Scholar 

  • Ibrahim M, Casasola F, Villanueva C, Murgueitio E, Ramírez E, Sáenz J, Sepúlveda C (2011) Payment for environmental services as a tool to encourage the adoption of silvopastoral systems and restoration of agricultural landscapes dominated by cattle in Latin America. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 197–220

    Google Scholar 

  • Isaac ME, Erickson BH, Quashie-Sam S, Timmer VR (2007) Transfer of knowledge on agroforestry management practices: the structure of farmer advice networks. Ecol Soc 12(2):32

    Article  Google Scholar 

  • Janzen DH (1988) Tropical dry forests, the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 130–137

    Google Scholar 

  • Jarvis A, Touval JL, Castro M, Sotomayor L, Hyman GG (2010) Assessment of threats to ecosystems in South America. J Nat Conserv 18:180–188

    Article  Google Scholar 

  • Kalacska M, Sánchez-Azofeia GS, Calvo-Alvarado JC, Quesada M, Rivard B, Janzen DH (2004) Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For Ecol Manag 200:227–247

    Article  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem Services in Biologically Diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4):40

    Article  Google Scholar 

  • Kremen C, Iles A, Bacon C (2012) Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol Soc 17(4):44

    Article  Google Scholar 

  • Ku Vera JC, Ruiz González A, Albores Moreno S, Briceño Poot E, Espinoza Hernández JC, Ruz Ruiz N, Contreras Hernández LM, Ayala Burgos AJ, Ramírez Avilés L (2011) Alimentación de rumiantes en sistemas silvopastoriles intensivos: avances recientes de investigación básica. En: Memorias III Congreso sobre Sistemas Silvopastoriles Intensivos para la Ganadería Sostenible del siglo XXI. Morelia y Tepalcatepec, Michoacán. 3,4 y 5 de marzo de 2011. Fundación Produce Michoacán, Universidad Autónoma de Yucatán, Fundación CIPAV. Morelia, Michoacán, pp 8–16

    Google Scholar 

  • Lamb D, Stanturf J, Madsen P (2012) What is forest landscape restoration? In: Stanturf J et al (eds) Forest landscape restoration: integrating natural and social sciences, World Forests 15. Springer, Dordrecht, pp 3–23

    Chapter  Google Scholar 

  • Leakey RRB (2014) The role of trees in agroecology and sustainable agriculture in the tropics. Annu Rev Phytopathol 52:113–133

    Article  CAS  PubMed  Google Scholar 

  • Mahecha L, Gallego L, Pelaez F (2002) Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad. Rev Col Cienc Pec 15:2

    Google Scholar 

  • Manuel-Navarrete D, Slocombe S, Mitchell B (2006) Science for place-based socioecological management: lessons from the Maya forest (Chiapas and Petén). Geography and Environmental Studies Faculty Publications, Paper 10

    Google Scholar 

  • Marlay S (2015) Evaluación del potencial de los proyectos agroforestales para lograr beneficios ambientales y socio-económicos en zonas rurales de Haití. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales, Serie técnica, Informe técnico, vol 402. CATIE/Editorial CIPAV, Turrialba/Cali, pp 203–230

    Google Scholar 

  • Mayfield MM, Boni MF, Daily GC, Ackerly D (2005) Species and functional diversity of native and human-dominated plant communities. Ecology 86:2365–2372

    Article  Google Scholar 

  • McNeely JA (1995) Biodiversity conservation and traditional agroecosystems. In: Saunier RE, Meganck RA (eds) Conservation of biodiversity and the new regional planning. Organization of American States and IUCN

    Google Scholar 

  • Medina E (2005) Diversity of life forms of higher plants in Neotropical dry forest. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forest. Cambridge University Press, Cambridge, MA, pp 221–224

    Google Scholar 

  • Medina A, Harvey CA, Sánchez D, Vílchez S, Hernández B (2007) Bat diversity and movement in a neotropical agricultural landscape. Biotropica 39:120–128

    Article  Google Scholar 

  • Méndez VE, Lok R, Somarriba E (2001) Interdisciplinary analysis of homegardens in Nicaragua: microzonation, plant use and socioeconomic importance. Agrofor Syst 51:85–96

    Article  Google Scholar 

  • Metzel R, Montagnini F (2014) From farm to Forest: factors associated with protecting and planting trees in a Panamanian agricultural landscape. Bois et Forêts des Tropiques 324:3–15

    Article  Google Scholar 

  • Michon G, Foresta H, Levang P, Verdeaux F (2007) Domestic forests: a new paradigm for integrating local communities’ forestry into tropical forest science. Ecol Soc 12:1. www.ecologyandsociety.org/vol12/iss2/art1/

  • Miles L, Newton AC, Defries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Miller RP, Nair PKR (2006) Indigenous agroforestry systems in Amazonia: from prehistory to today. Agrofor Syst 66:151–164

    Article  Google Scholar 

  • Montagnini F (2006) Homegardens of Mesoamerica: biodiversity, food security, and nutrient management. In: Kumar BM, Nair PKR (eds) Tropical Homegardens: a time-tested example of sustainable agroforestry. Springer, Dordrecht, pp 61–84

    Chapter  Google Scholar 

  • Montagnini F (2008) Management for Sustainability and Restoration of degraded pastures in the Neotropics. In: Myster RW (ed) Post-agricultural succession in the Neotropics. Springer, New York, pp 265–295

    Chapter  Google Scholar 

  • Montagnini F, Finney C (2011) Payments for environmental Services in Latin America as a tool for restoration and rural development. AMBIO 40:285–297

    Article  PubMed  Google Scholar 

  • Montagnini F et al. (ed) (1992) Sistemas agroforestales, principios y aplicaciones en los trópicos. Organización para Estudios Tropicales, San José, Costa Rica, 622 pp

    Google Scholar 

  • Montagnini F, Francesconi W, Rossi E (eds) (2011) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, 201pp

    Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des Tropiques 316:3–16

    Article  Google Scholar 

  • Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (2015) Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales. Serie técnica. Informe técnico 402. CATIE/Editorial CIPAV, Turrialba/Cali, 454 p.

    Google Scholar 

  • Murgueitio E (2000) Sistemas agroforestales para la producción ganadera en Colombia. In: Pomareda C, Steinfeld H (eds) Intensificación de la Ganadería en Centroamérica – Beneficios Económicos y Ambientales. CATIE/FAO and SIDE, San José, Costa Rica, pp 219–242

    Google Scholar 

  • Murgueitio E, Ibrahim M (2001) Agroforestería pecuaria para la reconversión de la ganadería en Latinoamérica. Livest Res Rural Dev, 13: Article 26. http://www.lrrd.org/lrrd13/3/murg133.htm. Accessed 19 Aug 2015

  • Murgueitio E, Ibrahim M (2008) Ganadería y medio ambiente en América Latina. In: Murgueitio E, Cuartas C, Naranjo JF (eds) Ganadería del futuro: investigación para el desarrollo. CIPAV, Cali, pp 19–40

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663

    Article  Google Scholar 

  • Murgueitio E, Xóchitl Flores M, Calle Z, Chará JD, Barahona R, Molina CH, Uribe F (2015) Productividad en sistemas silvopastoriles intensivos en América Latina. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales, Funciones Productivas, Socioeconómicas y Ambientales, Serie técnica, Informe técnico, vol 402. CATIE/ Editorial CIPAV, Turrialba/Cali, pp 59–104

    Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Nair PKR (1991) State-of-the-art of agroforestry systems. For Ecol Manag 45:5–29

    Article  Google Scholar 

  • Parmentier S (2014) caling-up agroecological approaches: what, why and how? Oxfam-Solidarity, Belgium, p 92

    Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann NY Acad Sci 1174:173–200

    Article  Google Scholar 

  • Pezo D, Ibrahim M (1998) Sistemas Silvopastoriles. Materiales de Enseñanza no. 44 / CATIE CATIE-GTZ Turrialba, 276 pp

    Google Scholar 

  • Phalan B, Green RE, Dicks LV, Dotta G, Feniuk C, Lamb A, Strassburg BBN, Williams DR, EKHJz E, Balmford A (2016) How can higher-yield farming help to spare nature? Science 351:450–451

    Article  CAS  PubMed  Google Scholar 

  • Philpott SM, Arendt W, Armbrecht I, Bichier P, Dietsch T, Gordon C, Greenberg R, Perfecto I, Soto-Pinto L, Tejeda-Cruz C, Williams G, Valenzuela J (2008) Biodiversity loss in Latin American coffee landscapes: reviewing evidence on ants, birds, and trees. Conserv Biol 22:1093–1105

    Article  PubMed  Google Scholar 

  • Piotto D, Montagnini F, Ugalde L, Kanninen M (2003) Growth and effects of thinning of mixed and pure plantations with native trees in humid tropical Costa Rica. For Ecol Manag 177:427–439

    Article  Google Scholar 

  • Piotto D, Víquez E, Montagnini F, Kanninen M (2004) Pure and mixed forest plantations with native species of the dry tropics of Costa Rica: a comparison of growth and productivity. For Ecol Manag 190:359–372

    Article  Google Scholar 

  • Pomareda CB (2000) Perspectivas en los mercados y oportunidades para la inversión en Ganadería. In: Intensificación de la ganadería en Centroamérica. FAO/CATIE, Turrialba, pp 55–74

    Google Scholar 

  • Portillo C, Sánchez-Azofeifa GA (2010) Extent and conservation of tropical dry forests of the Americas. Biol Conserv 143:144–155

    Article  Google Scholar 

  • Price NW (1989) The tropical mixed garden in Costa Rica: a potential focus for agroforestry research? PhD Diss, British Columbia, Canada, University of British Columbia, Vancouver

    Google Scholar 

  • Quesada M, Stoner KE (2004) Threats to the conservation of the tropical dry forest in Costa Rica. In: Frankie GW, Mata A, Vinson SB (eds) Biodiversity conservation in Costa Rica: learning the lessons in a seasonal dry Forest. University of California Press, Berkeley, pp 266–280

    Google Scholar 

  • Ramakrishnan PS, Young A, Cheatle RJ, Muraya P, Camacho Mora P, Kristiansen G, Cabarle B, Haeuber R (1992) Shifting agriculture and sustainable development, an interdisciplinary study from north-eastern India. No. GTZ 791. UNESCO, Paris

    Google Scholar 

  • Rivera JE, Arenas F, Cuartas C, Naranjo JF, Tafur O, Hurtado E, Gacharná N, Zambrano F, Murgueitio E (2010) Producción y calidad de leche bovina en un sistema de pastoreo en monocultivo y un sistema silvopastoril intensivo (SSPi) compuesto de Tithonia diversifolia bajo ramoneo directo, Brachiaria spp. y árboles maderables en el piedemonte amazónico. In: Memorias VI Congreso Latinoamericano de Agroforestería para la Producción Pecuaria Sostenible. Panamá, Panamá), CATIE – CIPAV, Turrialba/Cali

    Google Scholar 

  • Rodrigues RR, Lima RA, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142(6):1242–1251

    Article  Google Scholar 

  • Sáenz JC, Villatoro F, Ibrahim M, Fajardo D, Pérez M (2007) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48

    Google Scholar 

  • Sánchez-Azofeifa GA, Quesada M, Rodríguez JP, Nassar J, Stoner KE, Castillo A, Garvin T, Zent E, Calvo-Alvarado JC, Kalacska M, Fajardo F, Gamon JA, Cuevas-Reyes P (2005a) Research priorities for Neotropical dry forests. Biotropica 37:477–485

    Article  Google Scholar 

  • Sánchez-Azofeifa GA, Kalacska N, Quesada M, Calvo-Alvarado JC, Nassar JM, Rodriguez JP (2005b) Need for integrated research for a sustainable future in tropical dry forests. Conserv Biol 19:285–286

    Article  Google Scholar 

  • Scheelje JM (2009) Incidencia de la legislación sobre el aprovechamiento del recurso maderable en sistemas silvopastoriles de Costa Rica. Tesis Mag Sci Turrialba, CATIE, 157 pp

    Google Scholar 

  • Scheelje M, Ibrahim M, Detlefsen G, Pomareda C, Sepúlveda C (2011) Beneficios financieros del aprovechamiento maderable sostenible en sistemas silvopastoriles de Esparza, Costa Rica. Agroforestería en las Américas 48:137–145

    Google Scholar 

  • Sekercioglu C, Loarie SR, Oviedo Brenes F, Ehrlich PR, Daily GC (2007) Persistence of forest birds in the Costa Rican agricultural countryside. Conserv Biol 21:482–494

    Article  PubMed  Google Scholar 

  • Shelton M (2009) Feeding Leucaena to ruminant livestock: The Australian experience. In: Proceedings II Congreso sobre Sistemas Silvopastoriles Intensivos, en camino hacia núcleos de ganadería y bosques. Fundación Produce Michocán, Morelia, Michoacán (electronic document)

    Google Scholar 

  • Silva PPV (2002) Sistemas agroflorestais para recuperacão de matas ciliares em Piracicaba, SP. M.S. thesis, ESALQ-USP, Brazil

    Google Scholar 

  • Solorio-Sánchez FJ, Bacab-Pérez HM, Ramírez-Avilés L (2011) Los Sistemas Silvopastoriles Intensivos en el Valle de Tepalcatepec, Michoacán. En: Memorias III Congreso sobre Sistemas Silvopastoriles Intensivos para la Ganadería Sostenible del siglo XXI. Morelia y Tepalcatepec, Michoacán. 3,4 y 5 de marzo de 2011. Fundación Produce Michoacán, Universidad Autónoma de Yucatán, Fundación CIPAV. Morelia, Michoacán, México. Morelia, Michoacán, Méxicopp, pp 17–31

    Google Scholar 

  • Somarriba E (1997) Pastoreo bajo plantaciones forestales. Agroforestería en las Américas 4:26–28

    Google Scholar 

  • Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121

    Article  Google Scholar 

  • Suárez A, Williams-Linera G, Trejo C, Valdez-Hernández JI, Cetina-Alcalá VM, Vibrans H (2012) Local knowledge helps select species for forest restoration in a tropical dry forest of central Veracruz, Mexico. Agrofor Syst 85:35–55

    Article  Google Scholar 

  • Terrones Rincón T, del Rl H-MMA, Ríos-Ruiz SA, Martínez-Ayala C (2011) Non-wood products from native multipurpose trees from agroforestry homegardens in the semiarid Mexican plateau. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 85–97

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • van Breugel M, Hall JS, Craven DJ, Gregoire TG, Park A, Dent DH, Wishnie MH, Mariscal E, Deago J, Ibarra D, Cedeño N, Ashton MS (2011) Early growth and survival of 49 tropical tree species across sites differing in soil fertility and rainfall in Panama. For Ecol Manag 261:1580–1589

    Article  Google Scholar 

  • Vieira DLM, Scariot A (2006) Principles of natural regeneration of tropical dry forests for restoration. Restor Ecol 14:11–20

    Article  Google Scholar 

  • Vieira DLM, Holl KD, Peneireiro FM (2009) Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor Ecol 17:451–459

    Article  Google Scholar 

  • Villanueva C, Tobar D, Ibrahim M, Casasola F, Barrantes J, Arguedas R (2007) Árboles dispersos en potreros en fincas ganaderas del Pacífico Central de Costa Rica. Agroforestería en las Américas 45:12–20

    Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeño N, Ibarra D, Condit R, Ashton PMS (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. For Ecol Manag 243:39–49

    Article  Google Scholar 

  • World Bank (2016) Haiti Overview http://www.worldbank.org/en/country/haiti/overview. Accessed 10 May 2016

  • World Resources Institute – WRI (2014) Initiative 20x20: bringing 20 million hectares of degraded land in Latin America and the Caribbean into restoration by 2020. Retrieved on September 22, 2016 from http://www.wri.org/our-work/project/initiative-20x20

  • Yamamoto W, Ap Dewi I, Ibrahim M (2007) Effects of silvopastoral areas on milk production at dual-purpose cattle farms at the semi-humid old agricultural frontier in central Nicaragua. Agric Syst 94:368–375

    Article  Google Scholar 

  • Zuidema PA, Sayer JA (2003) Tropical forests in multi-functional landscapes: the need for new approaches to conservation and research. In: Zuidema PA (ed) Tropical forests in multifunctional landscapes. Seminar proceedings. Prince Bernhard Centre. Utrecht University, Utrecht, pp 9–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montes-Londoño, I. (2024). Tropical Dry Forests in Multifunctional Landscapes: Agroforestry Systems for Conservation and Livelihoods. In: Montagnini, F. (eds) Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty. Advances in Agroforestry, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-54270-1_5

Download citation

Publish with us

Policies and ethics

Navigation