Nutrition and Epigenetic Modifications During Pregnancy

  • Chapter
  • First Online:
Molecular Mechanisms in Nutritional Epigenetics

Part of the book series: Epigenetics and Human Health ((EHH,volume 12))

  • 73 Accesses

Abstract

During pregnancy, proper nutrition plays a vital role in maternal health and fetal development. However, emerging research suggests that nutrition can also influence epigenetic modifications, which are implicated in various health outcomes, including developmental disorders and chronic diseases. On the one hand, maternal nutrition can directly impact the fetal epigenome. For example, inadequate intake of folate and other methyl donors has been linked to altered DNA methylation patterns in the offspring. On the other hand, maternal nutrition can indirectly influence the epigenome through its effects on both maternal and fetal metabolic health. These alterations may contribute to an increased risk of metabolic disorders and chronic diseases in the offspring later in life. Emerging evidence suggests that maternal nutrition can also induce transgenerational epigenetic modifications, meaning that the effects may be passed on to subsequent generations. For these reasons, exploring the relationship between nutrition and epigenetic modifications during pregnancy is of utmost importance for prenatal care and public health initiatives. This field of research highlights the significance of a balanced and nutrient-rich diet for pregnant women to optimize pregnancy outcomes and to promote health of future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5mC:

5-methylcytosine

ATGL:

Adipose triglyceride lipase

DNMTs:

DNA methyltransferases

FAD:

Flavin adenine dinucleotide

FATP1:

Fatty acid transport protein 1

FKBP5:

FK506 binding protein 5

GHSR:

Growth hormone secretagogue receptor

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

IAP:

Intracisternal A-particle

IGF2:

Insulin-like growth factor 2

JmjC:

Jumonji C

LEP:

Leptin

LINE-1:

Long interspersed nucleotide element-1

LSD1:

Lysine-specific histone demethylase 1

miRNAs:

MicroRNAs

PDK4:

Pyruvate dehydrogenase kinase 4

PEG3:

Paternally expressed gene 3

PGC1α:

Peroxisome proliferator-activated receptor-gamma coactivator-1α

piRNAs:

PIWI-interacting RNAs

PPARα:

Peroxisomal proliferator-activated receptor α

RNAi:

RNA interference

RXRA:

Retinoid X receptor alpha

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

SGLT1:

Sodium/glucose cotransporter 1

siRNAs:

Small-interfering RNAs

snoRNAs:

Small nucleolar RNAs

TET:

Ten–eleven translocation

tRFs:

tRNA-derived fragments

tRNAs:

Transfer RNAs

tsRNAs:

tRNA-derived small RNAs

**st:

X inactive specific transcript

ZAC1:

Zinc-finger protein regulator of apoptosis and cell cycle arrest

References

  • Agodi A, Barchitta M, Quattrocchi A et al (2015) Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr 10(5):480

    Article  PubMed  Google Scholar 

  • Aldhous MC, Hor K, Reynolds RM (2018) Epigenetics and diet in pregnancy. In: Lammi-Keefe CJ, Couch SC, Kirwan JP (eds) Handbook of nutrition and pregnancy. Springer, Cham, pp 163–181

    Chapter  Google Scholar 

  • Amarasekera M, Martino D, Ashley S et al (2014) Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J 28(9):4068–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 18(11):643–658

    Article  CAS  PubMed  Google Scholar 

  • Azzi S, Sas TC, Koudou Y et al (2014) Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 9(3):338–345

    Article  CAS  PubMed  Google Scholar 

  • Balasundaram P, Avulakunta ID (2022) Human growth and development. In: StatPearls. StatPearls Publishing LLC, Treasure Island, FL

    Google Scholar 

  • Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchitta M, Maugeri A, Quattrocchi A et al (2017) The role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. Int J Genomics 2017:8067972

    Article  PubMed  PubMed Central  Google Scholar 

  • Barchitta M, Maugeri A, Magnano San Lio R et al (2019) Dietary patterns are associated with leukocyte LINE-1 methylation in women: a cross-sectional study in Southern Italy. Nutrients 11(8)

    Google Scholar 

  • Barchitta M, Magnano San Lio R, La Rosa MC et al (2023) The effect of maternal dietary patterns on birth weight for gestational age: findings from the MAMI-MED cohort. Nutrients 15(8)

    Google Scholar 

  • Barua S, Chadman KK, Kuizon S et al (2014a) Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS One 9(7):e101674

    Article  PubMed  PubMed Central  Google Scholar 

  • Barua S, Kuizon S, Chadman KK et al (2014b) Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenet Chromatin 7(1):1–15

    Article  Google Scholar 

  • Belbasis L, Savvidou MD, Kanu C et al (2016) Birth weight in relation to health and disease in later life: an umbrella review of systematic reviews and meta-analyses. BMC Med 14(1):147

    Article  PubMed  PubMed Central  Google Scholar 

  • Blusztajn JK, Mellott TJ (2012) Choline nutrition programs brain development via DNA and histone methylation. Cent Nerv Syst Agents Med Chem 12(2):82–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeke CE, Baccarelli A, Kleinman KP et al (2012) Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics 7(3):253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195

    Article  CAS  PubMed  Google Scholar 

  • Bošković A, Rando OJ (2018) Transgenerational Epigenetic Inheritance. Annu Rev Genet 52:21–41

    Article  PubMed  Google Scholar 

  • Bouwland-Both MI, Steegers-Theunissen RP, Vujkovic M et al (2013) A periconceptional energy-rich dietary pattern is associated with early fetal growth: the Generation R study. BJOG 120(4):435–445

    Article  CAS  PubMed  Google Scholar 

  • Breton CV, Landon R, Kahn LG et al (2021) Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 4(1):769

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucciantini M, Leri M, Nardiello P et al (2021) Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants (Basel) 10(7)

    Google Scholar 

  • Buppasiri P, Lumbiganon P, Thinkhamrop J et al (2015) Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst Rev (10):CD007079

    Google Scholar 

  • Burdge GC, Slater-Jefferies J, Torrens C et al (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97(3):435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW (2021) Gene regulation and cellular metabolism: an essential partnership. Trends Genet 37(4):389–400

    Article  CAS  PubMed  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14(2):100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94

    Article  CAS  PubMed  Google Scholar 

  • Chang R, Mei H, Zhang Y et al (2022) Early childhood body mass index trajectory and overweight/obesity risk differed by maternal weight status. Eur J Clin Nutr 76(3):450–455

    Article  PubMed  Google Scholar 

  • Chen YH, Liu ZB, Ma L et al (2020) Gestational vitamin D deficiency causes placental insufficiency and fetal intrauterine growth restriction partially through inducing placental inflammation. J Steroid Biochem Mol Biol 203:105733

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, He C, Wang M et al (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 4(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Chia AR, Chen LW, Lai JS et al (2019) Maternal dietary patterns and birth outcomes: a systematic review and meta-analysis. Adv Nutr 10(4):685–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho CE, Sánchez-Hernández D, Reza-López SA et al (2013) High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 8(7):710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SW, Claycombe KJ, Martinez JA et al (2013) Nutritional epigenomics: a portal to disease prevention. Adv Nutr 4(5):530–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Clapp JF III (2002) Maternal carbohydrate intake and pregnancy outcome. Proc Nutr Soc 61(1):45–50

    Article  PubMed  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl):2393S–2400S

    Article  CAS  PubMed  Google Scholar 

  • Corrales P, Vidal-Puig A, Medina-Gómez G (2021) Obesity and pregnancy, the perfect metabolic storm. Eur J Clin Nutr 75(12):1723–1734

    Article  PubMed  Google Scholar 

  • Correia-Branco A, Keating E, Martel F (2015) Maternal undernutrition and fetal developmental programming of obesity: the glucocorticoid connection. Reprod Sci 22(2):138–145

    Article  PubMed  Google Scholar 

  • Crichton GE, Howe PR, Buckley JD et al (2012) Long-term dietary intervention trials: critical issues and challenges. Trials 13:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Crider KS, Quinlivan EP, Berry RJ et al (2011) Genomic DNA methylation changes in response to folic acid supplementation in a population-based intervention study among women of reproductive age. PLoS One 6(12):e28144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crider KS, Yang TP, Berry RJ et al (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for Folate’s role. Adv Nutr 3(1):21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crouch J, Shvedova M, Thanapaul R et al (2022) Epigenetic regulation of cellular senescence. Cells 11(4)

    Google Scholar 

  • Cucó G, Arija V, Iranzo R et al (2006) Association of maternal protein intake before conception and throughout pregnancy with birth weight. Acta Obstet Gynecol Scand 85(4):413–421

    Article  PubMed  Google Scholar 

  • Dalfrà MG, Burlina S, Del Vescovo GG et al (2020) Genetics and epigenetics: new insight on gestational diabetes mellitus. Front Endocrinol (Lausanne) 11:602477

    Article  PubMed  Google Scholar 

  • Davison JM, Mellott TJ, Kovacheva VP et al (2009) Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. J Biol Chem 284(4):1982–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Benoist B (2008) Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 29(2 Suppl):S238–S244

    Article  PubMed  Google Scholar 

  • de Seymour JV, Beck KL, Conlon CA (2022) Nutrition in pregnancy. Obstet Gynaecol Reprod Med 32(11):253–258

    Article  Google Scholar 

  • Dearden L, Ozanne SE (2015) Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol 39:3–16

    Article  PubMed  Google Scholar 

  • Delage B, Dashwood RH (2008) Dietary manipulation of histone structure and function. Annu Rev Nutr 28:347–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De-Regil LM, Peña-Rosas JP, Fernández-Gaxiola AC et al (2015) Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst Rev 12

    Google Scholar 

  • Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11):4999–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott HR, Sharp GC, Relton CL et al (2019) Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction. Diabetologia 62(12):2171–2178

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson JG (2016) Developmental origins of health and disease - from a small body size at birth to epigenetics. Ann Med 48(6):456–467

    Article  PubMed  Google Scholar 

  • Fitz-James MH, Cavalli G (2022) Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet 23(6):325–341

    Article  CAS  PubMed  Google Scholar 

  • Franchini DM, Schmitz KM, Petersen-Mahrt SK (2012) 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 46:419–441

    Article  CAS  PubMed  Google Scholar 

  • Francis NJ, Follmer NE, Simon MD et al (2009) Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137(1):110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer AA, Nafee TM, Ismail KM et al (2009) LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study. Epigenetics 4(6):394–398

    Article  CAS  PubMed  Google Scholar 

  • Fryer AA, Emes RD, Ismail KM et al (2011) Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6(1):86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan A, Arimondo PB, Rots MG et al (2019) The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 11(1):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganu RS, Harris RA, Collins K et al (2012) Maternal diet: a modulator for epigenomic regulation during development in nonhuman primates and humans. Int J Obes Suppl 2(2):S14–S18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraghty AA, Lindsay KL, Alberdi G et al (2015) Nutrition during pregnancy impacts offspring’s epigenetic status-evidence from human and animal studies. Nutr Metab Insights 8(Suppl 1):41–47

    CAS  PubMed  Google Scholar 

  • Gerrard DT, Berry AA, Jennings RE et al (2020) Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders. Nat Commun 11(1):3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105(1):4–13

    Article  CAS  PubMed  Google Scholar 

  • Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  PubMed  Google Scholar 

  • Gomes MV, Pelosi GG (2013) Epigenetic vulnerability and the environmental influence on health. Exp Biol Med (Maywood) 238(8):859–865

    Article  PubMed  Google Scholar 

  • Gómez-Roig MD, Pascal R, Cahuana MJ et al (2021) Environmental exposure during pregnancy: influence on prenatal development and early life: a comprehensive review. Fetal Diagn Ther 48(4):245–257

    Article  PubMed  Google Scholar 

  • Gong L, Pan YX, Chen H (2010) Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics 5(7):619–626

    Article  CAS  PubMed  Google Scholar 

  • Gu TP, Guo F, Yang H et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477(7366):606–610

    Article  CAS  PubMed  Google Scholar 

  • Guéant JL, Daval JL, Vert P et al (2012) Folates and fetal programming: role of epigenetics and epigenomics. Bull Acad Natl Med 196(9):1829–1842

    PubMed  Google Scholar 

  • Haggarty P (2012) Nutrition and the epigenome. Prog Mol Biol Transl Sci 108:427–446

    Article  CAS  PubMed  Google Scholar 

  • Haggarty P, Hoad G, Campbell DM et al (2013) Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr 97(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Hanley B, Dijane J, Fewtrell M et al (2010) Metabolic imprinting, programming and epigenetics - a review of present priorities and future opportunities. Br J Nutr 104(Suppl 1):S1–S25

    Article  CAS  PubMed  Google Scholar 

  • Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518

    Article  CAS  PubMed  Google Scholar 

  • Heerwagen MJ, Miller MR, Barbour LA et al (2010) Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 299(3):R711–R722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herring CM, Bazer FW, Johnson GA et al (2018) Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp Biol Med (Maywood) 243(6):525–533

    Article  CAS  PubMed  Google Scholar 

  • Hildreth JR, Vickers MH, Buklijas T et al (2023) Understanding the importance of the early-life period for adult health: a systematic review. J Dev Orig Health Dis 14(2):166–174

    Article  PubMed  Google Scholar 

  • Hochberg Z, Feil R, Constancia M et al (2011) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32(2):159–224

    Article  CAS  PubMed  Google Scholar 

  • Hofmeyr GJ, Lawrie TA, Atallah ÁN et al (2018) Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev 10

    Google Scholar 

  • Hollingsworth JW, Maruoka S, Boon K et al (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118(10):3462–3469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hornstra G (2000) Essential fatty acids in mothers and their neonates. Am J Clin Nutr 71(5):1262S–1269S

    Article  CAS  PubMed  Google Scholar 

  • Horsthemke B (2018) A critical view on transgenerational epigenetic inheritance in humans. Nat Commun 9(1):2973

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyo C, Murtha AP, Schildkraut JM et al (2011) Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 6(7):928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Liu X, Zeng Y et al (2021) DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 13(1):166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S-J, Xu Y-M, Lau ATY (2018) Epigenetic effects of the 13 vitamins. Curr Pharmacol Rep 4(6):453–467

    Article  CAS  Google Scholar 

  • Ideraabdullah FY, Zeisel SH (2018) Dietary modulation of the epigenome. Physiol Rev 98(2):667–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikedionwu CA, Dongarwar D, Yusuf KK et al (2020) Pre-pregnancy maternal obesity, macrosomia, and risk of stillbirth: a population-based study. Eur J Obstet Gynecol Reprod Biol 252:1–6

    Article  PubMed  Google Scholar 

  • Inoue S, Honma K, Mochizuki K et al (2015) Induction of histone H3K4 methylation at the promoter, enhancer, and transcribed regions of the Si and Sglt1 genes in rat jejunum in response to a high-starch/low-fat diet. Nutrition 31(2):366–372

    Article  CAS  PubMed  Google Scholar 

  • Institute of Medicine (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Jebeile H, Mijatovic J, Louie JCY et al (2016) A systematic review and metaanalysis of energy intake and weight gain in pregnancy. Am J Obstet Gynecol 214(4):465–483

    Article  PubMed  Google Scholar 

  • Jiang X, Yan J, West AA et al (2012) Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J 26(8):3563–3574

    Article  CAS  PubMed  Google Scholar 

  • Johnson IT, Belshaw NJ (2014) The effect of diet on the intestinal epigenome. Epigenomics 6(2):239–251

    Article  CAS  PubMed  Google Scholar 

  • Joshi RO, Chellappan S, Kukshal P (2020) Exploring the role of maternal nutritional epigenetics in congenital heart disease. Curr Dev Nutr 4(11)

    Google Scholar 

  • Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153(1):56–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaspar D, Hastreiter S, Irmler M et al (2020) Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genome 31(5–6):119–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Kereliuk SM, Dolinsky VW (2022) Recent experimental studies of maternal obesity, diabetes during pregnancy and the developmental origins of cardiovascular disease. Int J Mol Sci 23(8):4467

    Article  PubMed  PubMed Central  Google Scholar 

  • Khot V, Kale A, Joshi A et al (2014) Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids. Biomed Res Int 2014:613078

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim C, Harrall KK, Glueck DH et al (2022) Gestational diabetes mellitus, epigenetic age and offspring metabolism. Diabet Med 39(11):e14925

    Article  PubMed  PubMed Central  Google Scholar 

  • Koemel NA, Skilton MR (2022) Epigenetic aging in early life: role of maternal and early childhood nutrition. Curr Nutr Rep 11(2):318–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koletzko B, Cetin I, Brenna JT (2007) Dietary fat intakes for pregnant and lactating women. Br J Nutr 98(5):873–877

    Article  CAS  PubMed  Google Scholar 

  • Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Focus on acetylation: the role of histone deacetylase inhibitors in cancer therapy and beyond. Expert Opin Investig Drugs 16(5):569–571

    Article  CAS  PubMed  Google Scholar 

  • Korsmo HW, Jiang X, Caudill MA (2019) Choline: exploring the growing science on its benefits for moms and babies. Nutrients 11(8)

    Google Scholar 

  • Kovacheva VP, Mellott TJ, Davison JM et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem 282(43):31777–31788

    Article  CAS  PubMed  Google Scholar 

  • Kundakovic M, Jaric I (2017) The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes (Basel) 8(3)

    Google Scholar 

  • Kwon EJ, Kim YJ (2017) What is fetal programming?: A lifetime health is under the control of in utero health. Obstet Gynecol Sci 60(6):506–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer A, Meleis A, Knaul FM et al (2015) Women and health: the key for sustainable development. Lancet 386(9999):1165–1210

    Article  PubMed  Google Scholar 

  • Lea AJ, Tung J, Archie EA et al (2018) Developmental plasticity: bridging research in evolution and human health. Evol Med Public Health 2017(1):162–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H-S (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7(11):9492–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman N, Wang SY, Greer EL (2019) Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 59:189–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386

    Article  CAS  PubMed  Google Scholar 

  • Lintas C (2019) Linking genetics to epigenetics: the role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 95(2):241–252

    Article  CAS  PubMed  Google Scholar 

  • Ly A, Hoyt L, Crowell J et al (2012) Folate and DNA methylation. Antioxid Redox Signal 17(2):302–326

    Article  CAS  PubMed  Google Scholar 

  • Mahajan A, Sapehia D, Thakur S et al (2019) Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep 9(1):17602

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhotra A, Allison BJ, Castillo-Melendez M et al (2019) Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol (Lausanne) 10:55

    Article  PubMed  Google Scholar 

  • Maloney CA, Hay SM, Young LE et al (2011) A methyl-deficient diet fed to rat dams during the peri-conception period programs glucose homeostasis in adult male but not female offspring. J Nutr 141(1):95–100

    Article  PubMed  Google Scholar 

  • Martin-Gronert MS, Ozanne SE (2006) Maternal nutrition during pregnancy and health of the offspring. Biochem Soc Trans 34(Pt 5):779–782

    Article  CAS  PubMed  Google Scholar 

  • Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153(6):2823–2830

    Article  CAS  PubMed  Google Scholar 

  • Masuyama H, Mitsui T, Nobumoto E et al (2015) The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156(7):2482–2491

    Article  CAS  PubMed  Google Scholar 

  • Masuyama H, Mitsui T, Eguchi T et al (2016) The effects of paternal high-fat diet exposure on offspring metabolism with epigenetic changes in the mouse adiponectin and leptin gene promoters. Am J Physiol Endocrinol Metab 311(1):E236–E245

    Article  PubMed  Google Scholar 

  • Mate A, Reyes-Goya C, Santana-Garrido Á et al (2021) Lifestyle, maternal nutrition and healthy pregnancy. Curr Vasc Pharmacol 19(2):132–140

    Article  CAS  PubMed  Google Scholar 

  • Maugeri A, Barchitta M (2020) How dietary factors affect DNA methylation: lesson from epidemiological studies. Medicina (Kaunas) 56(8):374

    Article  PubMed  Google Scholar 

  • Maugeri A, Barchitta M, Mazzone MG et al (2018) Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int J Mol Sci 19(7)

    Google Scholar 

  • Maugeri A, Barchitta M, Favara G et al (2019) Maternal dietary patterns are associated with pre-pregnancy body mass index and gestational weight gain: results from the “Mamma & Bambino” Cohort. Nutrients 11(6):1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor JA, Allen KG, Harris MA et al (2001) The omega-3 story: nutritional prevention of preterm birth and other adverse pregnancy outcomes. Obstet Gynecol Surv 56(5):S1–S13

    Article  CAS  PubMed  Google Scholar 

  • McKay JA, Groom A, Potter C et al (2012) Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12. PLoS One 7(3):e33290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehedint MG, Niculescu MD, Craciunescu CN et al (2010) Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J 24(1):184–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Mentch SJ, Mehrmohamadi M, Huang L et al (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22(5):861–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohtat D, Susztak K (2010) Fine tuning gene expression: the epigenome. Semin Nephrol 30(5):468–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Serrano D, Kyriakou D, Kirmizis A (2019) Histone modifications as an intersection between diet and longevity. Front Genet 10:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagnoli C, Santoro CB, Buzzi T et al (2022) Maternal periconceptional nutrition matters. A sco** review of the current literature. J Matern Fetal Neonatal Med 35(25):8123–8140

    Article  PubMed  Google Scholar 

  • Moore VM, Davies MJ, Willson KJ et al (2004) Dietary composition of pregnant women is related to size of the baby at birth. J Nutr 134(7):1820–1826

    Article  CAS  PubMed  Google Scholar 

  • Most J, Dervis S, Haman F et al (2019) Energy intake requirements in pregnancy. Nutrients 11(8)

    Google Scholar 

  • Mousa A, Naqash A, Lim S (2019) Macronutrient and micronutrient intake during pregnancy: an overview of recent evidence. Nutrients 11(2):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naninck EFG, Stijger PC, Brouwer-Brolsma EM (2019) The importance of maternal folate status for brain development and function of offspring. Adv Nutr 10(3):502–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelissen EC, van Montfoort AP, Dumoulin JC et al (2011) Epigenetics and the placenta. Hum Reprod Update 17(3):397–417

    Article  CAS  PubMed  Google Scholar 

  • Niculescu MD, Craciunescu CN, Zeisel SH (2006) Dietary choline deficiency alters global and gene-specific DNA methylation in the develo** hippocampus of mouse fetal brains. FASEB J 20(1):43

    Article  CAS  PubMed  Google Scholar 

  • Novakovic B, Sibson M, Ng HK et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284(22):14838–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Paksa A, Rajagopal J (2017) The epigenetic basis of cellular plasticity. Curr Opin Cell Biol 49:116–122

    Article  CAS  PubMed  Google Scholar 

  • Pap N, Fidelis M, Azevedo L et al (2021) Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr Opin Food Sci 42:167–186

    Article  CAS  Google Scholar 

  • Park S-Y, Kim J-S (2020) A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 52(2):204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrettini S, Caroli A, Torlone E (2020) Nutrition and metabolic adaptations in physiological and complicated pregnancy: focus on obesity and gestational diabetes. Front Endocrinol 11

    Google Scholar 

  • Pauwels S, Duca RC, Devlieger R et al (2016) Maternal methyl-group donor intake and global DNA (hydroxy)methylation before and during pregnancy. Nutrients 8(8)

    Google Scholar 

  • Pauwels S, Ghosh M, Duca RC et al (2017a) Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics 12(1):1–10

    Article  PubMed  Google Scholar 

  • Pauwels S, Ghosh M, Duca RC et al (2017b) Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics 9(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavethynath S, Imai C, ** X et al (2019) Metabolic and immunological shifts during mid-to-late gestation influence maternal blood methylation of CPT1A and SREBF1. Int J Mol Sci 20(5):1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena-Rosas J, De-Regil L, Garcia-Casal M et al (2015) Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev 2015(7):CD004736

    PubMed  PubMed Central  Google Scholar 

  • Poulsen MM, Jørgensen JO, Jessen N et al (2013) Resveratrol in metabolic health: an overview of the current evidence and perspectives. Ann N Y Acad Sci 1290:74–82

    Article  CAS  PubMed  Google Scholar 

  • Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72(4):267–284

    Article  PubMed  Google Scholar 

  • Purnell MC, MacKenzie MA (2016) The intergenerational cycle of obesity and its implications for nursing care of childbearing women. Nurs Womens Health 20(3):289–297

    Article  PubMed  Google Scholar 

  • Radford EJ, Isganaitis E, Jimenez-Chillaron J et al (2012) An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet 8(4):e1002605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford EJ, Ito M, Shi H et al (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345(6198):1255903

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghavan R, Dreibelbis C, Kingshipp BL et al (2019) Dietary patterns before and during pregnancy and birth outcomes: a systematic review. Am J Clin Nutr 109(Suppl_7):729S–756S

    Article  PubMed  Google Scholar 

  • Rajendran P, Williams DE, Ho E et al (2011) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46(3):181–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan U, Grant F, Goldenberg T et al (2012) Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr Perinat Epidemiol 26(Suppl 1):285–301

    Article  PubMed  Google Scholar 

  • Randunu RS, Bertolo RF (2020) The effects of maternal and postnatal dietary methyl nutrients on epigenetic changes that lead to non-communicable diseases in adulthood. Int J Mol Sci 21(9)

    Google Scholar 

  • Reichetzeder C (2021) Overweight and obesity in pregnancy: their impact on epigenetics. Eur J Clin Nutr 75(12):1710–1722

    Article  PubMed  PubMed Central  Google Scholar 

  • Rennert O, Lee TL (2015) Epigenetics dynamics in development and disease. Int J Biochem Cell Biol 67:44

    Article  CAS  PubMed  Google Scholar 

  • Reverón-Gómez N, González-Aguilera C, Stewart-Morgan KR et al (2018) Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol Cell 72(2):239–249.e235

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds CM, Gray C, Li M et al (2015) Early life nutrition and energy balance disorders in offspring in later life. Nutrients 7(9):8090–8111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samblas M, Milagro FI, Martínez A (2019) DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 14(5):421–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Şanlı E, Kabaran S (2019) Maternal obesity, maternal overnutrition and fetal programming: effects of epigenetic mechanisms on the development of metabolic disorders. Curr Genom 20(6):419–427

    Article  Google Scholar 

  • Sapehia D, Mahajan A, Singh P et al (2023) High dietary folate and low vitamin B12 in parental diet disturbs the epigenetics of imprinted genes MEST and PHLDA2 in mice placenta. J Nutr Biochem 118:109354

    Article  CAS  PubMed  Google Scholar 

  • Schaible TD, Harris RA, Dowd SE et al (2011) Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 20(9):1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher B, Pothof J, Vijg J et al (2021) The central role of DNA damage in the ageing process. Nature 592(7856):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira N (2008) Prenatal nutrition: a critical window of opportunity for mother and child. Womens Health (Lond) 4(6):639–656

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang H, Huang S et al (2022) Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 7(1):200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shorter KR, Crossland JP, Webb D et al (2012) Peromyscus as a mammalian epigenetic model. Genet Res Int 2012:179159

    PubMed  PubMed Central  Google Scholar 

  • Shorter KR, Anderson V, Cakora P et al (2014) Pleiotropic effects of a methyl donor diet in a novel animal model. PLoS One 9(8):e104942

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinclair KD, Allegrucci C, Singh R et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104(49):19351–19356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer M, Moco S (2019) Resveratrol and its human metabolites-effects on metabolic health and obesity. Nutrients 11(1)

    Google Scholar 

  • Steegers-Theunissen RP, Obermann-Borst SA, Kremer D et al (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 4(11):e7845

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephenson J, Heslehurst N, Hall J et al (2018) Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 391(10132):1830–1841

    Article  PubMed  PubMed Central  Google Scholar 

  • Stover PJ (2006) Influence of human genetic variation on nutritional requirements. Am J Clin Nutr 83(2):436S–442S

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Kaneda M, O’Carroll D et al (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21(6):644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiffon C (2018) The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci 19(11)

    Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592

    Article  CAS  PubMed  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816

    Article  CAS  PubMed  Google Scholar 

  • Uddin MG, Fandy TE (2021) DNA methylation inhibitors: retrospective and perspective view. Adv Cancer Res 152:205–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahid F, Zand H, Nosrat-Mirshekarlou E et al (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562(1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Vanhees K, Vonhögen IG, van Schooten FJ et al (2014) You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring. Cell Mol Life Sci 71:271–285

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerman K, Reaver A, Roy C et al (2018) Longitudinal analysis of biomarker data from a personalized nutrition platform in healthy subjects. Sci Rep 8(1):14685

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR et al (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Li C, Liu X et al (2021) Insights into epigenetic patterns in mammalian early embryos. Protein Cell 12(1):7–28

    Article  PubMed  Google Scholar 

  • Yajnik CS, Deshpande S, Jackson A et al (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51:29–38

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang Z, Mo M et al (2018) The association of gestational diabetes mellitus with fetal birth weight. J Diabetes Complications 32(7):635–642

    Article  PubMed  Google Scholar 

  • Yehuda R, Daskalakis NP, Bierer LM et al (2016) Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry 80(5):372–380

    Article  CAS  PubMed  Google Scholar 

  • Zeisel S (2017) Choline, other methyl-donors and epigenetics. Nutrients 9(5)

    Google Scholar 

  • Zeng Y, Wu Y, Zhang Q et al (2022) Non-coding RNAs: the link between maternal malnutrition and offspring metabolism. Front Nutr 9:1022784

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kutateladze TG (2018) Diet and the epigenome. Nat Commun 9(1):3375

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang X, Shi J et al (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 20(5):535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, **ao X, Zhang Q et al (2014) DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr 112(11):1850–1857

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Hinoue T, Barnes B et al (2022) DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genom 2(7):100144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Chen Z, Shen W et al (2021) Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 6(1):245

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Maugeri .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Ethical Approval

This chapter is a review of previously published accounts; as such, no animal or human studies were performed.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maugeri, A., Barchitta, M., Magnano San Lio, R., Favara, G., Agodi, A. (2024). Nutrition and Epigenetic Modifications During Pregnancy. In: Vaschetto, L.M. (eds) Molecular Mechanisms in Nutritional Epigenetics. Epigenetics and Human Health, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-54215-2_5

Download citation

Publish with us

Policies and ethics

Navigation