Converting Agro-industrial By-products into Biodegradable Composite Materials for Food Packaging: Presentation of an Eco-reasoned Approach

  • Chapter
  • First Online:
Green Chemistry and Agro-food Industry: Towards a Sustainable Bioeconomy

Abstract

After revolutionizing everyday life in all sectors, including food packaging, providential plastic has turned into a time bomb, with harmful long-term effects of plastic waste. By setting up a research strategy simultaneously focusing on resources, usage and post-usage aspects of alternative packaging materials and technologies, advances are expected in terms of materials respectful of circular economy principles. In this context, biocomposite materials able to return to the soil through biodegradation and those constituents are all stemming from agricultural residues appear as interesting alternatives. As each food category presents specific needs, current demands for research deal with the development of the just necessary “custom-made” food packaging that offers a compromise between product quality, minimal environmental impact and maximum safety. To guide users in their choice of sustainable packaging, taking into account their constraints and expectations, decision-support tools are thus required. This chapter presents the current knowledge regarding (i) modeling and decision-support tools to address the multi-criteria and multi-actor aspects of the issue, (ii) the European scale development of eco-efficient composite materials derived from unrecycled agri-food residues, (iii) the stringent scrutiny that needs to be placed on the safety of these materials in contact, and finally (iv) clarification of their end-of-life options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FP7 EcoBioCAP:”Ecoefficient Biodegradable Composite Advanced Packaging” www.ecobiocap.eu

  2. 2.

    https://cordis.europa.eu/project/id/773375.

  3. 3.

    https://cordis.europa.eu/project/id/773375.

  4. 4.

    ASTM D6400 -Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. ASTM D6868 - Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities.

  5. 5.

    UNI 11,183:2006 - Plastic Materials Biodegradable at ambient temperature. Requirements and test methods.

References

  • Abraham, A., Park, H., Choi, O., & Sang, B. I. (2021). Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production—A review. Bioresource Technology, 322, 124537.

    Article  CAS  PubMed  Google Scholar 

  • ADEME. (2014). Déchets—edition 2014. https://www.actu-environnement.com/media/pdf/news-22241-chiffres-cles-dechets.pdf

  • Amienyo, D., Gujba, H., Stichnothe, H., & Azapagic, A. (2013). Life cycle environmental impacts of carbonated soft drinks. International Journal of Life Cycle Assessment, 18, 77–92.

    Article  CAS  Google Scholar 

  • Angellier-Coussy, H., Guillard, V., Guillaume, C., & Gontard, N. (2013). Role of packaging in the smorgasbord of action for sustainable food consumption. Agro Food Industry, 23, 15–19.

    Google Scholar 

  • Angellier-Coussy, H., Kemmer, D., Gontard, N., & Peyron, S. (2020). Physical-chemical and structural stability of PHA/wheat straw fibres based biocomposites under food contact conditions. Journal of Applied Polymer Science, e49231.

    Google Scholar 

  • Ariffin, H., Nishida, H., Shirai, Y., & Hassan, M. A. (2008). Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polymer Degradation Stability, 93, 1433–1439.

    Article  CAS  Google Scholar 

  • Azoulay, D., et al. (2019). Plastic and health: The hidden costs of a plastic planet. CIEL.

    Google Scholar 

  • Barthélémy, E., Spyropoulos, D., Milana, M. R., et al. (2014). Safety evaluation of mechanical recycling processes used to produce polyethylene terephthalate (PET) intended for food contact applications. Food Additives Contaminants: Part A Chem Anal Control Expo Risk Assess, 31, 490–497.

    Article  Google Scholar 

  • Barrett, J., et al. (2020). Microplastic pollution in deep-sea sediments from the great Australian bight. Frontiers in Marine Science.

    Google Scholar 

  • Bátori, V., Åkesson, D., Zamani, A., Taherzadeh, M. J., & Sárvári Horváth, I. (2018). Anaerobic degradation of bioplastics: A review. Waste Management, 80, 406–413.

    Article  PubMed  Google Scholar 

  • Beaumont, N. J., et al. (2019). Global ecological, social and economic impacts of marine plastic. Marine Pollution Bulletin, 142, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Berthet, M. A., Angellier-Coussy, H., Chea, V., et al. (2015a). Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV-based composites properties. Composite Part A. Applied Science Manufacturing, 72, 139–147.

    Article  CAS  Google Scholar 

  • Berthet, M. A., Angellier-Coussy, H., Machado, D., et al. (2015b). Exploring the potentialities of using lignocellulosic fibers derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products, 69, 110–122.

    Article  CAS  Google Scholar 

  • Boonmee, J., Kositanont, C., & Leejarkpai, T. (2016). Biodegradation of poly(Lactic acid), poly(hydroxybutyrate-co-hydroxyvalerate), poly(butylene succinate) and poly(butylene adipate-co-terephthalate) under anaerobic and oxygen limited thermophilic conditions. Environment Asia, 9(1), 107–115.

    Google Scholar 

  • Buche, P., Destercke, S., Guillard, V., et al. (2012). Flexible bipolar querying of uncertain data using an ontology. In: J. Kacprzyk (Ed.), Studies in computational intelligence. Springer.

    Google Scholar 

  • Cagnon, T., Méry, A., Chalier, P., et al. (2013). Fresh food packaging design: A requirement driven approach applied to strawberries and agro-based materials. Innovative Food and Science Emerging Technology, 20, 288–298.

    Article  CAS  Google Scholar 

  • Cazaudehore, G., Guyoneaud, R., Evon, P., et al. (2022a). Anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnology Advances, 56, 107916.

    Article  CAS  PubMed  Google Scholar 

  • Cazaudehore, G., Guyoneaud, R., Vasmara, C., et al. (2022b). Impact of mechanical and thermo-chemical pretreatments to enhance anaerobic digestion of poly(lactic acid). Chemosphere, 297, 133986.

    Article  CAS  PubMed  Google Scholar 

  • Chea, V., Angellier-Coussy, H., Peyron, S., Kemmer, & D., Gontard, N. (2016). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging: Physical-chemical and structural stability under food contact conditions. Journal of Applied Polymer Science, 133(2), SI (41850).

    Google Scholar 

  • Clarke, K., Tchabanenko, K., Pawlosky, R., et al. (2012). Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regulatory Toxicol Pharmacol, 63, 196–208.

    Article  CAS  Google Scholar 

  • David, G., Vannini, M., Sisti, L., Celli, A.-M., Gontard, N., & Angellier-Coussy, H. (2020a). Eco-conversion of two winery lignocellulosic wastes into fillers for biocomposites: Vine Shoots and Wine Pomace. Polymers, 12, 1530–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David, G., Heux, L., Pradeau, S., Gontard, N., & Angellier-Coussy, H. (2020b). Upcycling vine shoots for biocomposites applications: About the interest of filler surface esterification to improve their performance. Journal of Polymers and the Environment, 29(2), 404–417.

    Article  Google Scholar 

  • David, G., Michel, J., Gastaldi, E., Gontard, N., & Angellier-Coussy, H. (2020c). How vine shoots as fillers impact the biodegradation of PHBV-based composites. International Journal of Molecular Sciences, 21, 228.

    Article  CAS  Google Scholar 

  • David, G., Croxatto, G., Sohn, J., Nilsson, A. E., Hélias, A., Gontard, N., & Angellier-Coussy, H. (2021). Using life cycle assessment to quantify the environmental benefit of up-cycling vine shoots as fillers in biocomposite packaging materials. The International Journal of Life Cycle Assessment, 26, 738–752.

    Article  CAS  Google Scholar 

  • Dedieu, I., Aouf, C., Gaucel, S., & Peyron, S. (2022). Mechanical recyclability of biodegradable polymers used for food packaging: case study of polyhydroxybutyrate-co-valerate (PHBV) plastic. Food Additives and Contaminants—Part A, 39(11), 1878–1892.

    Google Scholar 

  • Dedieu, I., Aouf, C., Gaucel, S., & Peyron, S. (2023). Recycled poly(hydroxybutyrate-co-valerate) as food packaging: Effect of multiple melt processing on packaging performance and food contact suitability. Journal of Polymers and the Environment, 31(3), 1019–1028.

    Article  CAS  Google Scholar 

  • Destercke, S., Buche, P., & Guillard, V. (2011). A flexible bipolar querying approach with imprecise data and guaranteed results. Fuzzy Sets and Systems, 169, 51–64.

    Article  Google Scholar 

  • Doineau, E., Rol, F., Gontard, N., & Angellier-Coussy, H. (2022). Physical-chemical and structural stability of poly(3HB-co-3HV)/(ligno-)cellulosic fibre-based biocomposites over successive dishwashing cycles. Membranes, 12, 127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopico-Garcia, M. S., Ares-Pernas, A., Gonzalez-Rodriguez, M. V., et al. (2012). Commercial biodegradable material for food contact: Methodology for assessment of service life. Polym International, 61, 1648–1654.

    Article  CAS  Google Scholar 

  • Duval, C. (2014). Plastic waste and the environment. In: T. Hamaide, R. Deterre, J. F. Feller (Eds.), Environmental impact of plastics (pp. 57–69). Paris: Lavoisier Tec et Doc.

    Google Scholar 

  • EFSA. (2011). Scientific opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food. EFSA Journal, 9, 2184.

    Google Scholar 

  • European Commission. (1999). Council Directive 1999/31/EC of the 26 April 1999 on the landfill of waste, Official Journal of the European Communities.

    Google Scholar 

  • European Commission. (2004). Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food. Official Journal of the European Union, 47, 4–17.

    Google Scholar 

  • European Commission. (2011). Commission regulation (EU) No 10/2011 of 14 January 2011 on Plastic materials and articles intended to come into contact with food. Official Journal of the European Union, 1–89.

    Google Scholar 

  • Floros, J. D., & Matsos, K. I. (2005). Introduction to modified atmosphere packaging. Han J (pp. 159–172). Elsevier Academic Press, New-York.

    Google Scholar 

  • Frojan, J., Bisquert, P., Buche, P., Gontard, N., Boone, L., Dewulf, J., et al. (2022). Scoring methodology for comparing the environmental performance of food packaging. Packaging Technology and Science, 36, 439–463.

    Article  Google Scholar 

  • Geyer, R., Jambeck, J., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gontard, N., David, G., Guilbert, A., & Sohn, J. (2022). Recognizing the long-term impacts of plastic particles for preventing distorsion in decision-making. Nature Sustainability, 5, 472–478.

    Article  Google Scholar 

  • Guilbert, S., Guillaume, C., & Gontard, N. (2011). New packaging materials based on renewable resources: Properties, Applications, and Prospects. In: J. M. Ajjguilera, Barbosa, G. V. Canovas, R. Simpson, et al. (Eds.), Food engineering series (pp. 619–630). Presented at 10th international congress on engineering and food, Vina del Mar, CHL (2008–04–20–2008–04–24). Berlin: Springer.

    Google Scholar 

  • Guillard, V., Couvert, O., Stahl, V., et al. (2016). Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere. Food Microbiology, 58, 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Guillard, V., Couvert, O., Stahl, V., et al. (2018). MAP-OPT: A software for supporting decision-making in the field of modified atmosphere packaging of fresh non respiring foods. Packaging Research, 2(1), 28–47.

    Article  Google Scholar 

  • Guillaume, C., Chalier, P., & Gontard, N. (2008). Modified atmosphere packaging using environmentally compatible and active food packaging. Chiellini E (pp. 396–418). CRC Press, Boca Raton.

    Google Scholar 

  • Hale, R. C., Seeley, M. E., La Guardia, M. J., et al. (2020). A global perspective on microplastics. Journal of Geophysical Reserach: Oceans, 125, Article e2018JC014719.

    Google Scholar 

  • Horton, A. A., Walton, A., Spurgeon, D. J., et al. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Hermann, B. G., Debeer, L., De Wilde, B., et al. (2011). To compost or not to compost: Carbon and energy footprints of biodegradable materials’ waste treatment. Polymer Degradation Stability, 96, 1159–1171.

    Article  CAS  Google Scholar 

  • Kabbej, M., Angellier-Coussy, H., Wolf, C., Gontard, N., Gaucel, S., & Guillard, V. (2021). 3D modelling of mass transfer into biocomposite materials. Polymers, 13(14), 2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawecki, D., Scheeder, P. R. W., & Nowack, B. (2018). Probabilistic material flow analysis of seven commodity plastics in Europe. Environment Science Technology, 52, 9874–9888.

    Article  CAS  Google Scholar 

  • Kögel, T., Bjorøy, Ø., Toto, B., et al. (2020). Micro- and nanoplastic toxicity on aquatic life: Determining factors. Science of the Total Environment, 709, 136050.

    Article  PubMed  Google Scholar 

  • Lammi, S., Barakat, A., Mayer-Laigle, C., Djenane, D., Gontard, N., & Angellier-Coussy, H. (2018). Dry fractionation as a sustainable process to produce fillers from olive pomace for biocomposites. Powder Technology, 326, 44–53.

    Article  CAS  Google Scholar 

  • Mac Arthur, E. (2017). https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics.

  • Martino, L., Berthet, M. A., Angellier-Coussy, H., & Gontard, N. (2015). Understanding external plasticization of melt extruded PHBV-wheat straw fibers biodegradable composites for food packaging. Journal of Applied Polymer Science, 132, 41611.

    Article  Google Scholar 

  • Mat Yasin, N., Akkermans, S., & Van Impe, J. F. M. (2022). Enhancing the biodegradation of (Bio)plastic through pretreatments: A critical review. Waste Management, 150, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Mauricio, M., Guillard, V., Peyron, S., & Gontard, N. (2010). Wheat gluten nanocomposite films as food contact materials: Migration tests and impact of a novel food stabilization technology (high pressure). Journal of Applied Polymer Science, 166, 2526–2535.

    Article  Google Scholar 

  • Micolucci, F., Gottardo, M., Bolzonella, D., & Pavan, P. (2014). Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. International Journal of Hydrogen Energy, 39, 17563–17572.

    Article  CAS  Google Scholar 

  • Ministère de l'Environnement, de l'Energie et de la Pèche. (2013). IPCC 5th report on climate change: There’s still time to act. http://www2.developpement-durable.gouv.fr/5e-rapport-du-GIEC-sur-l-evolution.html

  • Montaño-Leyva, B., Ghizzi Da Silva, G., Gastaldi, E., et al. (2013). Biocomposites from wheat proteins and fibers: Structure / mechanical properties relationships. Industrial Crops and Products, 43, 545–555.

    Article  Google Scholar 

  • Mutsuga, M., Kawamura, Y., & Tanamoto, K. (2008). Migration of lactic acid, lactide and oligomers from polylactide food-contact materials. Food Additives and Contaminants: Part A, 25, 1283–1290.

    Article  CAS  Google Scholar 

  • Nerín, C., Contín, E., & Asensio, E. (2007). Kinetic migration studies using Porapak as solid-food simulant to assess the safety of paper and board as food-packaging materials. Analytical and Bioanalytical Chemistry, 387, 2283–2288.

    Article  PubMed  Google Scholar 

  • NF EN 13432. (2000). Packaging—Requirements for packaging recoverable by composting and biodegradation—Test program and evaluation criteria for final acceptance of packaging. Harmonized standard: Presumption of conformity to the European directive on packaging and packaging waste [94/62/EC].

    Google Scholar 

  • NF EN 14046. (2003). Packaging—Evaluation of the ultimate aerobic biodegradability of packaging materials under controlled composting conditions—Method by analysis of released carbon dioxide.

    Google Scholar 

  • NF EN 14045. (2003). Packaging—Evaluation of the disintegration of packaging materials in practical use tests under defined composting conditions.

    Google Scholar 

  • NF T 51-800 Plastics—Specifications for plastics suitable for home composting.

    Google Scholar 

  • Paul-Pont, I., Ghiglione, J.-F., Gastaldi, E., et al. (2023). Discussion about suitable applications for biodegradable plastics regarding their sources, uses and end of life. Waste Management, 157, 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Ragoßnig, A. M., Wartha, C., & Kirchner, A. (2008). Energy efficiency in waste-to-energy and its relevance with regard to climate control. Waste Management Research, 26, 70–77.

    Article  PubMed  Google Scholar 

  • Rochman, C. M., & Hoellein, T. (2020). The global odyssey of plastic pollution. Science, 368, 1184–1185.

    Article  CAS  PubMed  Google Scholar 

  • Tamani, N., Mosse, P., Croitoru, M., et al. (2014). A food packaging use case for argumentation. In: S. Closs, R. Studer, E. Garoufallou, & M. A. Sicilia (Eds.), Communications in computer and information science (vol. 478, pp. 344–358). Presented at 8. Metadata and semantics research conference: MTSR 2014, Karlsruhe, DEU (2014–11–27—2014–11–29). Berlin, DEU: Springer, Berlin.

    Google Scholar 

  • Thomopoulos, R., Baudrit, C., Boukhelifa, N., Boutrou, R., Buche, P., Guichard, E., et al. (2019). Multi-criteria reverse engineering for food: Genesis and ongoing advances. Food Engineering Reviews, 11(1), 44–60.

    Article  Google Scholar 

  • Tsiamis, D. A., & Castaldi, M. J. (2016). Determining accurate heating values of non-recycled plastics (NRP). Earth Engineering Center, City University of NewYork.
https://plastics.americanchemistry.com/Energy-Values-Non-Recycled-Plastics.pdf

  • Verma, R., et al. (2016). Toxic pollutants from plastic waste—A review. Procedia Environmental Sciences, 35, 701–708.

    Article  CAS  Google Scholar 

  • World Economic Forum. (2017). The new plastics economy: Catalysing action. http://www3.weforum.org/docs/WEF_NEWPLASTICSECONOMY_2017.pdf

  • Xu, G., Liu, X., Lin, Y., et al. (2015). Thermal hydrolysis of poly(l-lactic acid) films and cytotoxicity of water-soluble degradation products. Journal of Applied Polymer Science, 132, 42064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Angellier-Coussy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angellier-Coussy, H., Gastaldi, E., Gontard, N., Guillaume, C., Guillard, V., Peyron, S. (2024). Converting Agro-industrial By-products into Biodegradable Composite Materials for Food Packaging: Presentation of an Eco-reasoned Approach. In: Baumberger, S. (eds) Green Chemistry and Agro-food Industry: Towards a Sustainable Bioeconomy. Springer, Cham. https://doi.org/10.1007/978-3-031-54188-9_10

Download citation

Publish with us

Policies and ethics

Navigation