Nanoparticle Properties and Characterization

  • Chapter
  • First Online:
Environmental Nanotoxicology

Abstract

Nanoparticles are a fascinating and versatile class of materials that have gained immense significance in various scientific and technological fields due to their unique properties and characteristics. In this chapter, we will delve into the profound impact of nanoparticle size on their properties and how these attributes affect their behaviour and utility in a wide range of applications and the associated environmental implications. One of the most striking features of nanoparticles is their size-dependent properties. As the size of a nanoparticle decreases, its physical and chemical characteristics can change dramatically. Understanding and manipulating these optical properties have led to applications in fields like nanophotonics and sensors and even in medical diagnostics. This chapter discusses the size-dependent magnetic properties of nanoparticles that are crucial in various applications, particularly in data storage and biomedical imaging. Superparamagnetism, for instance, is a phenomenon observed in nanoparticles at a specific size range. It is characterised by the particles transitioning between magnetic states in response to external fields. This behaviour is exploited in magnetic resonance imaging (MRI) contrast agents and in the development of high-density magnetic data storage. Besides these size-dependent properties, the high surface area and unique surface chemistry of nanoparticles were also explained. Due to their small size, nanoparticles possess an incredibly high surface area per unit volume, which makes them highly reactive. The intricate interplay between surface properties and reactivity is of paramount importance. The high surface area allows nanoparticles to adsorb or react with a larger number of surrounding molecules. This feature is significant in catalysis, where nanoparticles act as catalysts, often outperforming their bulk counterparts. For example, platinum nanoparticles are widely used in catalytic converters in automobiles, significantly improving the efficiency of pollutant conversion. The catalytic activity of nanoparticles can be finely tuned by controlling their size and surface chemistry, making them essential in various chemical processes. The combination of size-dependent properties and the reactivity stemming from their unique surface characteristics has paved the way for innovations and advancements in numerous scientific and technological domains. Nanoparticles are making substantial contributions in fields as diverse as materials science, medicine, environmental science, energy storage, and more. This intricate interplay between surface properties and reactivity sheds light on the catalyst role nanoparticles perform in a myriad of chemical reactions, thus paving way for innovations and advancements across diverse scientific and technological domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, Z., Labbez, C., Nordholm, S., & Ahlberg, E. (2008). Size-dependent surface charging of nanoparticles. The Journal of Physical Chemistry C, 112(15), 5715–5723.

    CAS  Google Scholar 

  • Abid, H. A., & Al-Rashid, S. N. T. (2020). Study of the effect of nanoparticle size on the dielectric constant and concentration of charge carriers of Si and CdS materials. Chalcogenide Letters, 17, 623–629.

    CAS  Google Scholar 

  • Ağbulut, Ü. (2022). Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: A thermodynamic approach. Fuel Processing Technology, 225, 107060.

    Google Scholar 

  • Akbarzadeh, H., Abareshi, N., & Kamrani, M. (2023). Role of the middle-shell in the stability of three-shell nanoparticles: A molecular dynamics study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676, 132163.

    CAS  Google Scholar 

  • Ali, A., Shah, T., Ullah, R., Zhou, P., Guo, M., Ovais, M., et al. (2021). Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Frontiers in Chemistry, 9, 629054.

    CAS  Google Scholar 

  • Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U., & Kumer, A. (2023). Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS Omega, 8(31), 28133–28142.

    CAS  Google Scholar 

  • Almomani, F., Al-Jaml, K. L., & Bhosale, R. R. (2021). Solar photo-catalytic production of hydrogen by irradiation of cobalt co-doped TiO2. International Journal of Hydrogen Energy, 46(22), 12068–12081.

    CAS  Google Scholar 

  • Andhare, D. D., Patade, S. R., Kounsalye, J. S., & Jadhav, K. M. (2020). Effect of Zn do** on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 583, 412051.

    CAS  Google Scholar 

  • Ansari, S. M., Sinha, B. B., Sen, D., Sastry, P. U., Kolekar, Y. D., & Ramana, C. V. (2022). Effect of oleylamine on the surface chemistry, morphology, electronic structure, and magnetic properties of cobalt ferrite nanoparticles. Nanomaterials, 12(17), 3015.

    CAS  Google Scholar 

  • Avasthi, A., Caro, C., Pozo-Torres, E., Leal, M. P., & García-Martín, M. L. (2020). Magnetic nanoparticles as MRI contrast agents. In Surface-modified nanobiomaterials for electrochemical and biomedicine applications (pp. 49–91). Springer.

    Google Scholar 

  • Avval, Z. M., Malekpour, L., Raeisi, F., Babapoor, A., Mousavi, S. M., Hashemi, S. A., & Salari, M. (2020). Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metabolism Reviews, 52(1), 157–184.

    Google Scholar 

  • Aziz, S. B., Marif, R. B., Brza, M. A., Hassan, A. N., Ahmad, H. A., Faidhalla, Y. A., & Kadir, M. F. Z. (2019). Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: New insights to band gap study. Results in Physics, 13, 102220.

    Google Scholar 

  • Bhushan, J., & Maini, C. (2019). Nanoparticles: A promising novel adjunct for dentistry. Indian Journal of Dental Sciences, 11(3), 167–173.

    Google Scholar 

  • Bodelon, G., Montes-García, V., Perez-Juste, J., & Pastoriza-Santos, I. (2018). Surface-enhanced Raman scattering spectroscopy for label-free analysis of P. aeruginosa quorum sensing. Frontiers in Cellular and Infection Microbiology, 8, 143.

    Google Scholar 

  • Caizer, C. (2016). Nanoparticle size effect on some magnetic properties. In Handbook of nanoparticles (p. 475). Springer.

    Google Scholar 

  • Chen, Y. C., Huang, Y. S., Huang, H., Su, P. J., Perng, T. P., & Chen, L. J. (2020a). Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy, 67, 104225.

    CAS  Google Scholar 

  • Chen, Y., Lai, Z., Zhang, X., Fan, Z., He, Q., Tan, C., & Zhang, H. (2020b). Phase engineering of nanomaterials. Nature Reviews Chemistry, 4(5), 243–256.

    CAS  Google Scholar 

  • Cherednichenko, Y. V., Konnova, S. A., & Fakhrullin, R. F. (2022). Self-assembly of halloysite nanotubes as a tool for the formation of 3D structures. Colloid Journal, 84(3), 344–352.

    CAS  Google Scholar 

  • Ciofani, G. (Ed.). (2018). Smart nanoparticles for biomedicine. Elsevier.

    Google Scholar 

  • Coene, A., & Leliaert, J. (2022). Magnetic nanoparticles in theranostic applications. Journal of Applied Physics, 131(16).

    Google Scholar 

  • Coetzee, D., Venkataraman, M., Militky, J., & Petru, M. (2020). Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers, 12(4), 742.

    CAS  Google Scholar 

  • Danish, M. S. S., Estrella-Pajulas, L. L., Alemaida, I. M., Grilli, M. L., Mikhaylov, A., & Senjyu, T. (2022). Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals, 12(5), 769.

    CAS  Google Scholar 

  • Daoush, W. M. (2017). Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. Journal of Nanomedicine Research, 5(3), 00118.

    Google Scholar 

  • Dippong, T., Levei, E. A., & Cadar, O. (2021). Recent advances in synthesis and applications of MFe2O4 (M= Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials, 11(6), 1560.

    CAS  Google Scholar 

  • Dong, Y., Zhang, T. L., Wang, H., Liu, X., & Jiang, C. B. (2021). Chemical synthesis and characterization of SmCo 5/Co magnetic nanocomposite particles. Rare Metals, 40, 1224–1231.

    CAS  Google Scholar 

  • Du, M., Guo, L., Ren, H., Tao, X., Li, Y., Nan, B., et al. (2023). Non-noble FeCrO x bimetallic nanoparticles for efficient NH3 decomposition. Nanomaterials, 13(7), 1280.

    CAS  Google Scholar 

  • El-Hagary, M., Shaaban, E. R., Moustafa, S. H., & Gad, G. M. A. (2019). The particle size-dependent optical band gap and magnetic properties of Fe-doped CeO2 nanoparticles. Solid State Sciences, 91, 15–22.

    CAS  Google Scholar 

  • Ezhilmaran, B., & Bhat, S. V. (2022). Enhanced charge transfer in TiO2 nanoparticles/MoO3 nanostructures bilayer heterojunction electrode for efficient electrochromism. Materials Today Communications, 31, 103497.

    CAS  Google Scholar 

  • Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2–30.

    Google Scholar 

  • Fujii, S., Takano, S., Nakazawa, K., & Sakurai, K. (2022). Impact of zwitterionic polymers on the tumor permeability of molecular bottlebrush-based nanoparticles. Biomacromolecules, 23(7), 2846–2855.

    CAS  Google Scholar 

  • Gabor, A., & Somorjai, Y. (2011). Impact of surface chemistry. Proceedings of the National Academy of Sciences, 108, 3.

    Google Scholar 

  • Gao, D., Gao, J., Gao, F., Kuang, Q., Pan, Y., Chen, Y., & Pan, Z. (2021). Quintuple-mode dynamic anti-counterfeiting using multi-mode persistent phosphors. Journal of Materials Chemistry C, 9(46), 16634–16644.

    CAS  Google Scholar 

  • Ghini, M., Curreli, N., Camellini, A., Wang, M., Asaithambi, A., & Kriegel, I. (2021). Photodo** of metal oxide nanocrystals for multi-charge accumulation and light-driven energy storage. Nanoscale, 13(19), 8773–8783.

    CAS  Google Scholar 

  • Ghosh, S., Polaki, S. R., Macrelli, A., Casari, C. S., Barg, S., Jeong, S. M., & Ostrikov, K. K. (2022). Nanoparticle-enhanced multifunctional nanocarbons—recent advances on electrochemical energy storage applications. Journal of Physics D: Applied Physics, 55(41), 413001.

    CAS  Google Scholar 

  • He, X., Song, X., Qiao, W., Li, Z., Zhang, X., Yan, S., et al. (2015). Phase-and size-dependent optical and magnetic properties of CoO nanoparticles. The Journal of Physical Chemistry C, 119(17), 9550–9559.

    CAS  Google Scholar 

  • Holland, G. P., Sharma, R., Agola, J. O., Amin, S., Solomon, V. C., Singh, P., et al. (2007). NMR characterization of phosphonic acid capped SnO2 nanoparticles. Chemistry of Materials, 19(10), 2519–2526.

    CAS  Google Scholar 

  • Hong, C. S., Park, H. H., Moon, J., & Park, H. H. (2006). Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films. Thin Solid Films, 515(3), 957–960.

    CAS  Google Scholar 

  • Huang, J., Liu, J., & Wang, J. (2020). Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications. TrAC Trends in Analytical Chemistry, 124, 115800.

    CAS  Google Scholar 

  • Huang, W., Zhu, J., Wang, M., Hu, L., Tang, Y., Shu, Y., et al. (2021). Emerging mono-elemental bismuth nanostructures: Controlled synthesis and their versatile applications. Advanced Functional Materials, 31(10), 2007584.

    CAS  Google Scholar 

  • Huang, Z., Callmann, C. E., Wang, S., Vasher, M. K., Evangelopoulos, M., Petrosko, S. H., & Mirkin, C. A. (2022). Rational vaccinology: Harnessing nanoscale chemical design for cancer immunotherapy. ACS Central Science, 8(6), 692–704.

    CAS  Google Scholar 

  • Jeon, M., Halbert, M. V., Stephen, Z. R., & Zhang, M. (2021). Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Advanced Materials, 33(23), 1906539.

    CAS  Google Scholar 

  • Jiang, B., Lu, D., Jiang, N., Jiang, H., Qi, L., Shi, S., et al. (2022). Synthesis of non-precious N-doped mesoporous Fe3O4/CoO@ NC materials towards efficient oxygen reduction reaction for microbial fuel cells. Electroanalysis, 34(8), 1245–1255.

    CAS  Google Scholar 

  • Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262.

    Google Scholar 

  • Kamminga, M. E., Birk, J. O., í Hjøllum, J., Jacobsen, H., Lass, J., Koch, T. L., et al. (2023). Nanocriticality in the magnetic phase transition of CoO nanoparticles. Physical Review B, 107(6), 064424.

    CAS  Google Scholar 

  • Kanamaru, T., Sakurai, K., & Fujii, S. (2022). Impact of polyethylene glycol (peg) conformations on the in vivo fate and drug release behavior of pegylated core-cross-linked polymeric nanoparticles. Biomacromolecules, 23(9), 3909–3918.

    CAS  Google Scholar 

  • Kang, H., Rho, S., Stiles, W. R., Hu, S., Baek, Y., Hwang, D. W., et al. (2020). Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Advanced Healthcare Materials, 9(1), 1901223.

    CAS  Google Scholar 

  • Karak, N. (2019). Fundamentals of nanomaterials and polymer nanocomposites. In Nanomaterials and polymer nanocomposites (pp. 1–45). Elsevier.

    Google Scholar 

  • Khan, S., & Hossain, M. K. (2022). Classification and properties of nanoparticles. In Nanoparticle-based polymer composites (pp. 15–54). Woodhead Publishing.

    Google Scholar 

  • Khattab, T. A., El-Naggar, M. E., Abdelrahman, M. S., Aldalbahi, A., & Hatshan, M. R. (2021). Facile development of photochromic cellulose acetate transparent nanocomposite film immobilized with lanthanide-doped pigment: Ultraviolet blocking, superhydrophobic, and antimicrobial activity. Luminescence, 36(2), 543–555.

    CAS  Google Scholar 

  • Khurgin, J. B., & Levy, U. (2020). Generating hot carriers in plasmonic nanoparticles: When quantization does matter? ACS Photonics, 7(3), 547–553.

    CAS  Google Scholar 

  • Kianfar, E. (2021). Magnetic nanoparticles in targeted drug delivery: A review. Journal of Superconductivity and Novel Magnetism, 34(7), 1709–1735.

    CAS  Google Scholar 

  • Kolen’ko, Y. V., Bañobre-López, M., Rodríguez-Abreu, C., Carbó-Argibay, E., Sailsman, A., Piñeiro-Redondo, Y., et al. (2014). Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. The Journal of Physical Chemistry C, 118(16), 8691–8701.

    Google Scholar 

  • Kumari, K., Aljawfi, R. N., Chawla, A. K., Kumar, R., Alvi, P. A., Alshoaibi, A., et al. (2020). Engineering the optical properties of Cu doped CeO2 NCs for application in white LED. Ceramics International, 46(6), 7482–7488.

    CAS  Google Scholar 

  • Lee, S. A., & Link, S. (2021). Chemical interface dam** of surface plasmon resonances. Accounts of Chemical Research, 54(8), 1950–1960.

    CAS  Google Scholar 

  • Lee, K. C., Lin, S. J., Lin, C. H., Tsai, C. S., & Lu, Y. J. (2008). Size effect of Ag nanoparticles on surface plasmon resonance. Surface and Coatings Technology, 202(22–23), 5339–5342.

    CAS  Google Scholar 

  • Li, W., & Fortner, J. D. (2020). (Super) paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration. Frontiers of Environmental Science & Engineering, 14, 1–9.

    CAS  Google Scholar 

  • Materón, E. M., Miyazaki, C. M., Carr, O., Joshi, N., Picciani, P. H., Dalmaschio, C. J., et al. (2021). Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances, 6, 100163.

    Google Scholar 

  • Mendis, P., de Silva, R. M., de Silva, K. N., Wijenayaka, L. A., Jayawardana, K., & Yan, M. (2016). Nanosilver rainbow: A rapid and facile method to tune different colours of nanosilver through the controlled synthesis of stable spherical silver nanoparticles. RSC Advances, 6(54), 48792–48799.

    CAS  Google Scholar 

  • Mirvakili, S. M., & Langer, R. (2021). Wireless on-demand drug delivery. Nature Electronics, 4(7), 464–477.

    Google Scholar 

  • Mohapatra, J., **ng, M., Elkins, J., Beatty, J., & Liu, J. P. (2020). Size-dependent magnetic hardening in CoFe2O4 nanoparticles: Effects of surface spin canting. Journal of Physics D: Applied Physics, 53(50), 504004.

    Google Scholar 

  • Nejad, F. G., Tajik, S., Beitollahi, H., & Sheikhshoaie, I. (2021). Magnetic nanomaterials based electrochemical (bio) sensors for food analysis. Talanta, 228, 122075.

    Google Scholar 

  • Nguyen, A. T., Gao, F., Baucom, D., & Heyes, C. D. (2020). CuInS2-Doped ZnS quantum dots obtained via non-injection cation exchange show reduced but heterogeneous blinking and provide insights into their structure–optical property relationships. The Journal of Physical Chemistry C, 124(19), 10744–10754.

    CAS  Google Scholar 

  • Nguyen, D. T. C., Nguyen, T. T., Le, H. T., Nguyen, T. T. T., Bach, L. G., Nguyen, T. D., et al. (2021a). The sunflower plant family for bioenergy, environmental remediation, nanotechnology, medicine, food and agriculture: A review. Environmental Chemistry Letters, 19, 3701–3726.

    CAS  Google Scholar 

  • Nguyen, M. D., Tran, H. V., Xu, S., & Lee, T. R. (2021b). Fe3O4 Nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences, 11(23), 11301.

    CAS  Google Scholar 

  • Noreen, S., Tahir, M. B., Hussain, A., Nawaz, T., Rehman, J. U., Dahshan, A., et al. (2022). Emerging 2D-Nanostructured materials for electrochemical and sensing application-a review. International Journal of Hydrogen Energy, 47(2), 1371–1389.

    CAS  Google Scholar 

  • Pandey, P. (2022). Role of nanotechnology in electronics: A review of recent developments and patents. Recent Patents on Nanotechnology, 16(1), 45–66.

    Google Scholar 

  • Pandey, B. K., & Jaiswal, R. L. (2021). Theoretical prediction for band gap of semiconducting nanoparticles. Advanced Materials Letters, 12(10), 1–4.

    Google Scholar 

  • Pandey, B. K., & Jaiswal, R. L. (2022). Electrical conductivity of semiconducting nanoparticles. Physica B: Condensed Matter, 646, 414279.

    Google Scholar 

  • Paredes, P., Rauwel, E., & Rauwel, P. (2022). Surveying the synthesis, optical properties and photocatalytic activity of Cu3N nanomaterials. Nanomaterials, 12(13), 2218.

    CAS  Google Scholar 

  • Petrini, N., Ghini, M., Curreli, N., & Kriegel, I. (2023). Optical modelling of plasmonic nanoparticles with electronically depleted layers. The Journal of Physical Chemistry C, 127(3), 1576–1587.

    CAS  Google Scholar 

  • Popović, Z., Liu, W., Chauhan, V. P., Lee, J., Wong, C., Greytak, A. B., et al. (2010). A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie, 122(46), 8831–8834.

    Google Scholar 

  • Premaratne, M., & Agrawal, G. P. (2021). Theoretical foundations of nanoscale quantum devices. Cambridge University Press.

    Google Scholar 

  • Rivera-Rodriguez, A., & Rinaldi-Ramos, C. M. (2021). Emerging biomedical applications based on the response of magnetic nanoparticles to time-varying magnetic fields. Annual Review of Chemical and Biomolecular Engineering, 12, 163–185.

    CAS  Google Scholar 

  • Rohilla, D., & Chaudhary, S. (2023). Advanced nanoparticles: A boon or a bane for environmental remediation applications. In Advanced functional nanoparticles “boon or bane” for environment remediation applications: Combating environmental issues (pp. 27–74). Springer International Publishing.

    Google Scholar 

  • Rubel, M. H., & Hossain, M. K. (2022). Crystal structures and properties of nanomagnetic materials. In Fundamentals of low dimensional magnets (1st ed.). CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Sachleben, J. R., Wooten, E. W., Emsley, L., Pines, A., Colvin, V. L., & Alivisatos, A. P. (1992). NMR studies of the surface structure and dynamics of semiconductor nanocrystals. Chemical Physics Letters, 198(5), 431–436.

    CAS  Google Scholar 

  • Sagayaraj, R., Aravazhi, S., & Chandrasekaran, G. (2021). Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. International Nano Letters, 11(4), 307–319.

    CAS  Google Scholar 

  • Said, Z., Arora, S., Farooq, S., Sundar, L. S., Li, C., & Allouhi, A. (2022). Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: Academic insights and perspectives. Solar Energy Materials and Solar Cells, 236, 111504.

    CAS  Google Scholar 

  • Saleem, S., Jameel, M. H., Akhtar, N., Nazir, N., Ali, A., Zaman, A., et al. (2022). Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device applications. Arabian Journal of Chemistry, 15(1), 103518.

    CAS  Google Scholar 

  • Sanap, P., Hegde, V., Ghunawat, D., Patil, M., Nagaonkar, N., & Jagtap, V. (2020). Current applications of chitosan nanoparticles in dentistry: A review. International Journal of Applied Dental Science, 6(4), 81–84.

    Google Scholar 

  • Sengottiyan, S., Mikolajczyk, A., Jagiełło, K., Swirog, M., & Puzyn, T. (2023). Core, coating, or corona? The importance of considering protein coronas in nano-QSPR modeling of zeta potential. ACS Nano, 17(3), 1989–1997.

    CAS  Google Scholar 

  • Sharma, A., Varshney, M., Gautam, T., Sharma, A., Vij, A., Sharma, R. K., et al. (2022a). XANES investigations on electronic structure and magnetic properties of GaFeO3 nanocrystals. Journal of Electronic Materials, 51(8), 4133–4138.

    CAS  Google Scholar 

  • Sharma, R. K., Dey, G., Banerjee, P., Maity, J. P., Lu, C. M., Siddique, J. A., et al. (2022b). A new aspect of lipopeptide incorporated nanoparticles synthesis and recent advancement in biomedical and environmental sciences: A review. Journal of Materials Chemistry B, 11, 10–32.

    Google Scholar 

  • Shaumbwa, V. R., Liu, D., Archer, B., Li, J., & Su, F. (2021). Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. Journal of Applied Polymer Science, 138(42), 51241.

    CAS  Google Scholar 

  • Shi, Y. R., Ye, M. P., Du, L. C., & Weng, Y. X. (2018). Experimental determination of particle size-dependent surface charge density for silica nanospheres. The Journal of Physical Chemistry C, 122(41), 23764–23771.

    CAS  Google Scholar 

  • Shoukat, R., & Khan, M. I. (2021). Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsystem Technologies, 303, 1–10.

    Google Scholar 

  • Shrivas, K., Shankar, R., & Dewangan, K. (2015). Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples. Sensors and Actuators B: Chemical, 220, 1376–1383.

    CAS  Google Scholar 

  • Shukla, S., Khan, R., & Daverey, A. (2021). Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review. Environmental Technology & Innovation, 24, 101924.

    CAS  Google Scholar 

  • Singh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science, 12(4), 470–475.

    Google Scholar 

  • Soetaert, F., Korangath, P., Serantes, D., Fiering, S., & Ivkov, R. (2020). Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews, 163, 65–83.

    Google Scholar 

  • Stordy, B., Zhang, Y., Sepahi, Z., Khatami, M. H., Kim, P. M., & Chan, W. C. (2022). Conjugating ligands to an equilibrated nanoparticle protein corona enables cell targeting in serum. Chemistry of Materials, 34(15), 6868–6882.

    CAS  Google Scholar 

  • Tan, P., Fu, H., & Ma, X. (2021). Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today, 39, 101229.

    CAS  Google Scholar 

  • Tan, Y., Cai, W., Luo, C., Tang, J., Kwok, R. T., Lam, J. W., et al. (2022). Rapid biotransformation of luminescent bimetallic nanoparticles in hepatic sinusoids. Journal of the American Chemical Society, 144(45), 20653–20660.

    CAS  Google Scholar 

  • Tatarchuk, T., Bououdina, M., Judith Vijaya, J., & John Kennedy, L. (2017). Spinel ferrite nanoparticles: Synthesis, crystal structure, properties, and perspective applications. In Nanophysics, nanomaterials, interface studies, and applications: Selected proceedings of the 4th international conference Nanotechnology and Nanomaterials (NANO2016) (pp. 305–325). Springer International Publishing.

    Google Scholar 

  • Thomas, S., Rafiei, S., Maghsoodlou, S., & Afzali, A. (2014). Foundations of nanotechnology, volume two: Nanoelements formation and interaction. CRC Press.

    Google Scholar 

  • Till, J. L., Guyodo, Y., Lagroix, F., Morin, G., & Ona-Nguema, G. (2015). Goethite as a potential source of magnetic nanoparticles in sediments. Geology, 43(1), 75–78.

    Google Scholar 

  • Vallinayagam, S., Rajendran, K., Lakkaboyana, S. K., Soontarapa, K., Remya, R. R., Sharma, V. K., et al. (2021). Recent developments in magnetic nanoparticles and nano-composites for wastewater treatment. Journal of Environmental Chemical Engineering, 9(6), 106553.

    CAS  Google Scholar 

  • Verger, A., Brandhonneur, N., Molard, Y., Cordier, S., Kowouvi, K., Amela-Cortes, M., & Dollo, G. (2021). From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy. International Journal of Pharmaceutics, 604, 120763.

    CAS  Google Scholar 

  • Vertegel, A. A., Siegel, R. W., & Dordick, J. S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 20(16), 6800–6807.

    CAS  Google Scholar 

  • Vetchinkina, E., Loshchinina, E., Kupryashina, M., Burov, A., & Nikitina, V. (2019). Shape and size diversity of gold, silver, selenium, and silica nanoparticles prepared by green synthesis using fungi and bacteria. Industrial & Engineering Chemistry Research, 58(37), 17207–17218.

    CAS  Google Scholar 

  • Wang, Z., Liu, Q., Zhu, H., Liu, H., Chen, Y., & Yang, M. (2007). Dispersing multi-walled carbon nanotubes with water–soluble block copolymers and their use as supports for metal nanoparticles. Carbon, 45(2), 285–292.

    CAS  Google Scholar 

  • Wang, L., Hasanzadeh Kafshgari, M., & Meunier, M. (2020). Optical properties and applications of plasmonic-metal nanoparticles. Advanced Functional Materials, 30(51), 2005400.

    CAS  Google Scholar 

  • Willis, A. L., Turro, N. J., & O’Brien, S. (2005). Spectroscopic characterization of the surface of iron oxide nanocrystals. Chemistry of Materials, 17(24), 5970–5975.

    CAS  Google Scholar 

  • Woeppel, K. M., Zheng, X. S., Schulte, Z. M., Rosi, N. L., & Cui, X. T. (2019). Nanoparticle doped PEDOT for enhanced electrode coatings and drug delivery. Advanced Healthcare Materials, 8(21), 1900622.

    CAS  Google Scholar 

  • Wrigglesworth, E. G., & Johnston, J. H. (2021). Mie theory and the dichroic effect for spherical gold nanoparticles: An experimental approach. Nanoscale Advances, 3(12), 3530–3536.

    CAS  Google Scholar 

  • Xu, K., Xu, S., & Wei, F. (2021). Recent progress in magnetic applications for micro-and nanorobots. Beilstein Journal of Nanotechnology, 12(1), 744–755.

    CAS  Google Scholar 

  • Yakovkin, I., & Reshetnyak, V. (2023). Controlling plasmon resonance of gold and silver nanoparticle arrays with help of liquid crystal. Photonics, 10(10), 1088.

    CAS  Google Scholar 

  • Yüksel, Y. (2019). Effects of the particle size and shape of the magnetic nanoparticles on the magnetic hyperthermia and exchange bias properties☆. Physica B: Condensed Matter, 575, 411689.

    Google Scholar 

  • Zayadi, R. A., & Bakar, F. A. (2020). Comparative study on stability, antioxidant and catalytic activities of bio-stabilized colloidal gold nanoparticles using microalgae and cyanobacteria. Journal of Environmental Chemical Engineering, 8(4), 103843.

    CAS  Google Scholar 

  • Zhang, H. (2020). Molecularly imprinted nanoparticles for biomedical applications. Advanced Materials, 32(3), 1806328.

    CAS  Google Scholar 

  • Zhang, B., & Yan, B. (2010). Analytical strategies for characterizing the surface chemistry of nanoparticles. Analytical and Bioanalytical Chemistry, 396, 973–982.

    CAS  Google Scholar 

  • Zhang, Z., Ouyang, Y., Cheng, Y., Chen, J., Li, N., & Zhang, G. (2020). Size-dependent phononic thermal transport in low-dimensional nanomaterials. Physics Reports, 860, 1–26.

    CAS  Google Scholar 

  • Zhao, C., Qu, S., Qiu, J., & Zhu, C. (2003). Photoinduced formation of colloidal Au by a near-infrared femtosecond laser. Journal of Materials Research, 18(7), 1710–1714.

    CAS  Google Scholar 

  • Zou, W., Zhao, C., Zhang, X., **, C., Jiang, K., & Zhou, Q. (2022). Mitigation effects and associated mechanisms of environmentally relevant thiols on the phytotoxicity of molybdenum disulfide nanosheets. Environmental Science & Technology, 56(13), 9556–9568.

    CAS  Google Scholar 

  • Zufelato, N., Aquino, V. R., Shrivastava, N., Mendanha, S., Miotto, R., & Bakuzis, A. F. (2022). Heat generation in magnetic hyperthermia by manganese ferrite-based nanoparticles arises from Néel collective magnetic relaxation. ACS Applied Nano Materials, 5(5), 7521–7539.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onwaeze Oritseweyinmi Ogochukwu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogochukwu, O.O., Fabiyi, M.B., Aworunse, O.S., Oyewole, O.A., Isibor, P.O. (2024). Nanoparticle Properties and Characterization. In: Isibor, P.O., Devi, G., Enuneku, A.A. (eds) Environmental Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-54154-4_2

Download citation

Publish with us

Policies and ethics

Navigation