Percolation Model to Capture Urban Coalescence («Natural Cities»). The Case of Italy

  • Conference paper
  • First Online:
Innovation in Urban and Regional Planning (INPUT 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 467))

Included in the following conference series:

  • 133 Accesses

Abstract

The contribution intends to explore a new method to perimeter and identify urban areas based on a percolation model. Starting from the analysis of the road network and its nodes, through the application of some percolation measures it allows to identify different levels of urban agglomeration. The centrality of the road network is considered the primary indicator for understanding the urban agglomeration pattern. The simulation is applied to whole Italy. The simulation results are then compared with data from other sources of map** urban regions, such as satellite lights and the degree of urbanization from the JRC GHSL. The correspondence between these map**s and the one obtained with the percolation model is analyzed and the rank-size distribution of the “natural cities” thus obtained is observed. The purpose of the contribution is to find and experiment a spatial searching method that allows us to identify the different shapes and sizes of contemporary settlement, regardless of the definitions that can be derived from administrative boundaries. The hypothesis is that the conurbations of contemporary settlement tend to merge and fragment in a dynamic process of continuous evolution, caused by the fact that urban limits follow flows and networks, without regard for historical administrative boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batty, M.: Defining cities. In: Batty, M. (ed.) Inventing Future Cities. MIT Press, Cambridge (2018)

    Google Scholar 

  2. Alexander, C.: A City is Not a Tree. Sustasis Press/Off. The Common Books (2017)

    Google Scholar 

  3. Kostof, S.: The City Shaped. Little, Brown and Company (1991)

    Google Scholar 

  4. Cristelli, M., Batty, M., Pietronero, L.: There is more than a power law in Zipf. Sci. Rep. 2(1), 1–7 (2012)

    Article  Google Scholar 

  5. Jiang, B., Jia, T.: Zipf’s law for all the natural cities in the United States: a geospatial perspective. Int. J. Geogr. Inf. Sci. 25(8), 1269–1281 (2011)

    Article  Google Scholar 

  6. Jiang, B., Yin, J., Liu, Q.: Zipf’s law for all the natural cities around the world. Int. J. Geogr. Inf. Sci. 29(3), 498–522 (2015)

    Article  Google Scholar 

  7. Lin, H.X., Huang, J.C., Chen, Y.Q.: The identification of developmental pattern of urban agglomerations in china based on GIS. Iwemse, 663–671 (2018)

    Google Scholar 

  8. Loibl, W., et al.: Characteristics of urban agglomerations in different continents: history, patterns, dynamics, drivers and trends. In: Ergen, M. (ed.) Urban Agglomeration, BoD Books, pp. 29–63 (2018)

    Google Scholar 

  9. Cottineau, C., et al.: Defining urban clusters to detect agglomeration economies. Environ. Plan. B Urban Anal. City Sci. 46(9), 1611–1626 (2019)

    Article  Google Scholar 

  10. Batty, M.: Hierarchy in cities and city systems. In: Pumain, D. (ed.) Hierarchy in Natural and Social Sciences. Methodos Series, vol. 3, pp. 143–168. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4127-6_7

  11. Batty, M., Longley, P.A.: Fractal Cities: A Geometry of Form and Function. Academic Press, London (1994)

    Google Scholar 

  12. Batty, M., **e, X.: Self-organized criticality and urban development. Discrete Dyn. Nat. Soc. 3, 109–124 (1999)

    Article  Google Scholar 

  13. Tannier, C., et al.: A fractal approach to identifying urban boundaries. Geogr. Anal. 43(2), 211–227 (2011)

    Google Scholar 

  14. Eeckhout, J.: Gibrat’s law for (all) cities. Am. Econ. Rev. 94(5), 1429–1451 (2004)

    Article  Google Scholar 

  15. Chen, H.P.: Commuting and land use patterns. Geogr. Environ. Model. 4(2), 163–173 (2000)

    Article  Google Scholar 

  16. Holmes, T.J., Lee, S.: Cities as six-by-six-mile squares: Zipf's law? In: Glaeser, E.L. (ed.) The Economics of Agglomerations. University of Chicago Press, Chicago (2009)

    Google Scholar 

  17. Rozenfeld, H.D., et al.: The area and population of cities: new insights from a different perspective on cities. Am. Econ. Rev. 101(5), 2205–2225 (2011)

    Article  Google Scholar 

  18. Fang, C., Yu, D.: Urban agglomeration: an evolving concept of an emerging phenomenon. Landsc. Urban Plan. 162, 126–136 (2017)

    Article  Google Scholar 

  19. Howard, E.: To-morrow: A Peaceful Path to Real Reform. Routledge, London (2009)

    Google Scholar 

  20. Geddes, P.: Cities in Evolution. Norgate & Wiliams, London (1915)

    Google Scholar 

  21. Christaller, W.: Central Places in Southern Germany. Prentice-Hall, Englewood Cliffs (ed or.: 1933) (1966)

    Google Scholar 

  22. Shen, Y.: Understanding Functional Urban Centrality. University College London, London (2017)

    Google Scholar 

  23. Zipf, G.K.: Human Behavior and The Principle of Least Effort. Addison-Wesley, Cambridge (1949)

    Google Scholar 

  24. Batty, M.: The size, scale, and shape of cities. Science 319(5864), 769–771 (2008)

    Article  Google Scholar 

  25. Hellervik, A., Nilsson, L., Andersson, C.: Preferential centrality - a new measure unifying urban activity, attraction and accessibility. Environ. Plann. B 46(7), 1331–1346 (2019)

    Google Scholar 

  26. Kalpana, L.D.C.H.N., et al.: A novel approach to measure the pattern of urban agglomeration based on the road network. Int. J. Sustain. Dev. Plan. 16(2), 251–262 (2021)

    Article  Google Scholar 

  27. Jayasinghe, A., Sano, K., Abenayake, C., Mahanama, P.: A novel approach to model traffic on road segments of large-scale urban road networks. MethodsX 6, 1147–1163 (2019)

    Article  Google Scholar 

  28. Zhang, S.: Classification of urban land use based on graph theory and geographic information system. Ingénierie des Systèmes d’Information 24(6), 633–639 (2019)

    Article  MathSciNet  Google Scholar 

  29. Hellervik, A., Nilsson, L., Andersson, C.: Preferential centrality - a new measure unifying urban activity, attraction and accessibility. Environ. Plann. B Urban Anal. City Sci. 46(7), 1331–1346 (2019)

    Article  Google Scholar 

  30. Arcaute, E., et al.: Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3(4), 150691 (2016)

    Article  MathSciNet  Google Scholar 

  31. Vaughan, L., Hillier, B.: The city as one thing. Prog. Plan. 67(3), 205–230 (2007)

    Article  Google Scholar 

  32. Herega, A.: Some applications of the percolation theory: brief review of the century beginning. J. Mater. Sci. Eng., 409–414 (2015)

    Google Scholar 

  33. Masucci, P.A., Arcaute, R., Hatna, E., Stanilov, K., Batty, M.: On the problem of boundaries and scaling for urban street networks. J. R. Soc. Interface. 12(111), 20150763 (2015)

    Article  Google Scholar 

  34. Piovani, D., Molinero, C., Wilson, A.: Urban retail dynamics: insights from percolation theory and spatial interaction modelling (2017). ar**v:1703.10419

  35. Dematteis, G., Bonavero, P.: Il sistema urbano italiano nello spazio unificato europeo. Il Mulino, Bologna (1997)

    Google Scholar 

  36. Römer, R.A.: Percolation, renormalization and quantum hall transition. In: Hoffmann, K.H., Schreiber, M. (eds.) Computational Statistical Physics, pp. 279–294. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04804-7_17

  37. Malik, S., Tariq, F., Awan, Y: Urbanization and transforming urban form of Asian cities-cases of Bangkok, Tokyo & Mumbai. Int. J. Eng. Res. Mech. Civ. Eng. (IJERMCE) 2(6) (2017)

    Google Scholar 

  38. Imre, A.R., Jan, B.: The Minkowski-Bouligand dimension and the interior-to-edge ratio of habitats. Fractals 14(1), 49–53 (2006)

    Article  Google Scholar 

  39. Mandelbrot, B.B.: The fractal geometry of nature. Am. J. Phys. 51(3) (1983)

    Google Scholar 

  40. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2004)

    Google Scholar 

  41. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 42(3), 19 (2017)

    Article  MathSciNet  Google Scholar 

  42. Wang, H., Zhou, C., Li, L.: Design and application of a text clustering algorithm based on parallelized K-means clustering. Revue d’Intelligence Artificielle 33(6), 453–460 (2019)

    Article  Google Scholar 

  43. Brenner, N., Schmid, C.: Towards a new epistemology of the urban? City 19, 2–3, 151–182 (2015)

    Google Scholar 

  44. Soja, E.W.: Regional urbanization and the end of the metropolis era. In: Bridge, G., Watson, S. (eds.) The New Blackwell Companion to the City. Wiley-Blackwell, Oxford (2011)

    Google Scholar 

  45. OECD: Redefining “Urban”: A New Way to Measure Metropolitan Areas. OECD Publishing, Paris (2012)

    Google Scholar 

  46. Balducci, A., Curci, F., Fedeli, V. (eds.): Post-Metropolis Territory: Looking for a New Urbanity. Routledge, London, New York (2017b)

    Google Scholar 

  47. Arshad, S., Hu, S., Ashraf, B.N.: Zipf’s law and city size distribution: a survey of the literature and future research agenda. Phys. A Stat. Mech. Appl. 492, 75–92 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Lombardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lombardini, G. (2024). Percolation Model to Capture Urban Coalescence («Natural Cities»). The Case of Italy. In: Marucci, A., Zullo, F., Fiorini, L., Saganeiti, L. (eds) Innovation in Urban and Regional Planning. INPUT 2023. Lecture Notes in Civil Engineering, vol 467. Springer, Cham. https://doi.org/10.1007/978-3-031-54118-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54118-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54117-9

  • Online ISBN: 978-3-031-54118-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation