Power Law Approximation Results for Optimal Design Problems

  • Conference paper
  • First Online:
Nonlinear Differential Equations and Applications (PICNDEA 2022)

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 7))

  • 64 Accesses

Abstract

In this note, we show some results related to power law approximations for optimal design and damaging problems. The asymptotics, via \(\Gamma \)-convergence, leads to supremal functionals whose densities are related to the original ones via suitable asymptotic minimum problems. Some properties of these limiting energy densities are also proven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Acerbi, G. Bouchitté, & I. Fonseca, Relaxation of convex functionals: the gap problem, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 20,n. 3, (2003), 359–390.

    Google Scholar 

  2. E. Acerbi, G. Buttazzo, & F. Prinari, The class of functionals which can be represented by a supremum, J. Convex Anal., 9, n.1, (2002), 225–236.

    Google Scholar 

  3. G. Allaire & V. Lods, Minimizers for a double-well problem with affine boundary conditions, Proc. Royal Soc. Edinburgh 129 A, no. 3, (1999), 439–466.

    Google Scholar 

  4. N. Ansini & F. Prinari, Power-law approximation under differential constraints, SIAM J. Math. Anal., 46, (2014), 1085–1115.

    Article  MathSciNet  Google Scholar 

  5. N. Ansini & F. Prinari, On the lower semicontinuity of supremal functional under differential constraints, ESAIM, Control Optim. Calc. Var. 21, (2015), n. 4, 1053–1075 .

    Article  MathSciNet  Google Scholar 

  6. E. N. Barron, Jensen, R. R, & C. Y. Wang, Lower semicontinuity of\(L^\infty \)functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, (2001), n.4, 495–517.

    Google Scholar 

  7. A.C. Barroso & E. Zappale, Relaxation for optimal design problems with nonstandard growth, Appl. Math. Optim. 80, no. 2, (2019), 515–546.

    Article  MathSciNet  Google Scholar 

  8. A. Braides, I. Fonseca & G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J. 49, No. 4, 1367–1404, (2000).

    Article  MathSciNet  Google Scholar 

  9. A. Braides, I. Fonseca & G. Leoni, \({\mathcal A}\)-quasiconvexity: relaxation and homogenization. ESAIM Control Optim. Calc. Var. 5 (2000), 539–577.

    Google Scholar 

  10. M. Bocea & V. Nesi, \(\Gamma \)–convergence of power-law functionals, variational principles in \(L^\infty \), and applications, SIAM J. Math. Anal., 39, (2008), 1550–1576.

    Google Scholar 

  11. G. Carita & E. Zappale, 3D-2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization, C. R. Math. Acad. Sci. Paris, 350, no. 23–24, (2012), 1011–1016.

    Article  MathSciNet  Google Scholar 

  12. G. Carita & E. Zappale, Relaxation for an optimal design problem with linear growth and perimeter penalization, Proc. Royal Soc. Edinburgh A, 145, (2015), 223–268.

    Article  MathSciNet  Google Scholar 

  13. G. Carita & E. Zappale, A relaxation result in \(BV\times L^p\) for integral functionals depending on chemical composition and elastic strain, Asymptot. Anal., 100, (2016), n. 1–2, 1–20.

    Google Scholar 

  14. G. Carita, A. M. Ribeiro & E. Zappale, An homogenization result in \(W^{1,p}\times L^q\), J. Convex Anal., 18, (2011), n. 4, 1093–1126.

    Google Scholar 

  15. G. Dal Maso, An introduction to\(\Gamma \)-convergence. Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

    Google Scholar 

  16. I. Fonseca & G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films, journal fur die reine und angewandte mathematik, vol. 1998, no. 505, (1998), 173–202.

    Article  MathSciNet  Google Scholar 

  17. I. Fonseca, D. Kinderlehrer & P. Pedregal, Energy functionals depending on elastic strain and chemical composition, Calc. Var. Partial Differential Equations, 2, (1994), n. 3, 283–313.

    Article  MathSciNet  Google Scholar 

  18. I. Fonseca & G. Leoni, Modern Methods in the Calculus of Variations: \(L^p\) Spaces, Springer Monographs in Mathematics, Springer-Verlag, New York, 2007, pp. xiv+599.

    Google Scholar 

  19. I. Fonseca, & S. Müller, \(\mathcal A\)-quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal.,30, (1999), n. 6, 1355–1390.

    Google Scholar 

  20. G. A. Francfort & J.-J. Marigo, Stable damage evolution in a brittle continuous medium, European J. Mech. A Solids, 12, (1993), n. 2, 149–189.

    MathSciNet  Google Scholar 

  21. A. Garroni, V. Nesi & M. Ponsiglione, Dielectric breakdown: Optimal bounds, Proc. R. Soc. A (2001), 2317–2335.

    Google Scholar 

  22. H. Le Dret, & A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results, Arch. Ration. Mech. Anal., 154, (2000), 2, 101–134.

    Google Scholar 

  23. P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., IV. Ser. 117, (1978), 139–152.

    Google Scholar 

  24. D. Kinderlehrer & P. Pedregal Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 4, 115 (1991), pp. 329–365.

    Google Scholar 

  25. R.V. Kohn & G. Strang, Optimal design and relaxation of variational problems I, Commun. Pure Appl. Math. 39, (1986), 113–137.

    Article  MathSciNet  Google Scholar 

  26. R.V. Kohn & G. Strang, Optimal design and relaxation of variational problems II, Commun. Pure Appl. Math. 39, (1986), 139–182.

    Article  MathSciNet  Google Scholar 

  27. R.V. Kohn & G. Strang, Optimal design and relaxation of variational problems III, Commun. Pure Appl. Math. 39, (1986), 353–377.

    Article  MathSciNet  Google Scholar 

  28. F. Prinari & E. Zappale, A relaxation result in the vectorial setting and power law approximation for supremal functionals, J. Optim Theory Appl. 186, (2020), 412–452.

    Article  MathSciNet  Google Scholar 

  29. A.M. Ribeiro & E. Zappale, Revisited convexity notions for \(L^\infty \) variational problems https://arxiv.org/abs/2309.10190

  30. F. Rindler, Calculus of variations, Universitext, Springer, Cham, 2018, xii+444.

    Google Scholar 

  31. L. Tartar Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, 136–212, Pitman, Boston, Mass.-London, 1979.

    Google Scholar 

  32. H. Zorgati, A \(\Gamma \)-convergence result for optimal design problems, Comptes Rendus. Mathématique, 360, (2022) p. 1145–1151.

    Google Scholar 

Download references

Acknowledgements

EZ is a member of INdAM - GNAMPA whose support is gratefully acknowledged. VS acknowledges the support of Sapienza through “Programma Professori Visitatori in condizione di rischio a causa di conflitti anno 2022” and “INdAM Programma Sportello Ucraina”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Zappale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gargiulo, G., Samoilenko, V., Zappale, E. (2024). Power Law Approximation Results for Optimal Design Problems. In: Beirão da Veiga, H., Minhós, F., Van Goethem, N., Sanchez Rodrigues, L. (eds) Nonlinear Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical Sciences, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-53740-0_6

Download citation

Publish with us

Policies and ethics

Navigation