On a Forward and a Backward Stochastic Euler Equation

  • Conference paper
  • First Online:
Nonlinear Differential Equations and Applications (PICNDEA 2022)

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 7))

  • 71 Accesses

Abstract

We derive a stochastic Euler equation with transport noise and terminal time condition from a variational principle and relate it to the corresponding (and better known) forward equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arnaudon, X. Chen and A.B. Cruzeiro, Stochastic Euler-Poincaré reduction, J. Math. Physics 55 (2014), 081507.

    Article  MathSciNet  Google Scholar 

  2. N. Bhauryal, A.B. Cruzeiro and C. Oliveira, Pathwise stochastic control and a class of stochastic partial differential equations, arxiv.org/pdf/2301.09214.pdf , (2023).

    Google Scholar 

  3. R. Buckdahn and H. Föllmer, A conditional approach to the anticipating Girsanov transformation, Probab. Th. and Related Fields 95(3) (1993), 311–330

    Article  MathSciNet  Google Scholar 

  4. X. Chen, A.B. Cruzeiro and T. Ratiu, Stochastic variational principles for dissipative equations with advected quantities, J. Nonlinear Sci. 33 (2023), no. 1, Paper No.5.

    Google Scholar 

  5. X. Chen, A.B. Cruzeiro and Z. Qian, Navier-Stokes equation and forward-backward stochastic differential system in the Besov spaces, ar**v:1305.0647

    Google Scholar 

  6. F. Cipriano and A.B. Cruzeiro, Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus, Comm. Math. Phys. 275 (2007), 255–269.

    Article  MathSciNet  Google Scholar 

  7. D. Crisan and O. Lang, Well-posedness for a stochastic 2D Euler equation with transport noise, Stoch. and Partial Diff. Equations: Analysis and Computations, (2022).

    Google Scholar 

  8. A.B. Cruzeiro, Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers, J. Geom. Mech. 11(4) (2019), 553-560.

    Article  MathSciNet  Google Scholar 

  9. A.B. Cruzeiro, Stochastic approaches to deterministic fluid dynamics: a selective review, Water 12(3), (2020), 864.

    Article  Google Scholar 

  10. A.B. Cruzeiro and I. Torrecilla, On a 2D stochastic Euler equation of transport type: existence and energy transfer, Stoch. and Dynamics 15, 1 (2015), 1450012.

    Article  MathSciNet  Google Scholar 

  11. F. Flandoli and D. Luo, Lagrangian approach to 3D stochastic Euler equations, J. Geom. Mech. 11, No 2, (2019) 153–165.

    Google Scholar 

  12. B. Gess and M. Maurelli, Well-posedness by noise for scalar conservation laws, Comm. in Partial Diff. Equations 43, No 12, (2018), 1702–1736.

    Google Scholar 

  13. M. Hofmanová, T. Lange and U. Pappalettera, Global existence and non-uniqueness of 3D Euler equations perturbed by transport noise, arxiv.org/abs/2212.12217, (2022).

    Google Scholar 

  14. D.D. Holm, Variational principles for stochastic fluid dynamics, Proc. Royal Soc. A 471, No. 2176 (2015).

    Google Scholar 

  15. J. Ma, H. Yin and J. Zhang, On non-Markovian forward-backward SDEs and backward stochastic PDEs, Stoch. Processes and their Applic. 122 (2012), 3980–4004.

    Article  MathSciNet  Google Scholar 

  16. R. Mikulevicius and B.L. Rozovskii, Global \(L_2\)-solutions of stochastic Navier-Stokes equations, The Annals of Probab. 33, No 1 (2005), 137–176.

    Google Scholar 

  17. D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrands, Probab. Th. and Related Fields 78(4) (1988), 535–581.

    Article  MathSciNet  Google Scholar 

  18. D. Ocone and E. Pardoux, A generalized Itô-Wentzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. H. Poncaré Probab. Statist. 25(1) (1989), 39–71.

    Google Scholar 

  19. E. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDE’s, Probab. Th. and Related Fields 98 (1994), 209–227.

    Article  MathSciNet  Google Scholar 

  20. P. Sundar and H. Yin, Existence and uniqueness of solutions to the backward 2D stochastic Navier–Stokes equations, Stoch. Processes and their Applic. 119(4), (2009), 1216–1234.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported by FCT Portuguese grant UIDB/00208/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bela Cruzeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhauryal, N., Cruzeiro, A.B. (2024). On a Forward and a Backward Stochastic Euler Equation. In: Beirão da Veiga, H., Minhós, F., Van Goethem, N., Sanchez Rodrigues, L. (eds) Nonlinear Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical Sciences, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-53740-0_3

Download citation

Publish with us

Policies and ethics

Navigation