Role of Rhizobacteria in Phytoremediation of Heavy Metal

  • Chapter
  • First Online:
Heavy Metal Remediation

Abstract

Pollution sources in ecosystems are mostly anthropogenic. Heavy metal contamination is one of these concerns, threatening ecosystem health, plants, humans, and animals in different concentrations. Environmental remediation techniques are the probable solution to care for these situations. Every remediation treatment demands resources and some preneeds also have some side effects. Phytoremediation is one of the categories of bioremediations, which is considered a cost-effective and eco-friendly method for techniques categories, which is considered a cost-effective and eco-friendly method for soil and water cleanup. This method could be assisted using rhizobacteria. This chapter gathers and details the different roles of rhizobacteria in the phytoremediation of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abioye OP, Oyewole OA, Oyeleke SB, Adeyemi MO, Orukotan AA (2018) Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Braz J Biol Sci 5(9):25–32

    Article  Google Scholar 

  2. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  3. Ali S, Rizwan M, Zaid A et al (2018) 5-Aminolevulinic Acid-induced heavy metal stress tolerance and underlying mechanisms in plants. J Plant Growth Regul 37:1423–1436

    Article  CAS  Google Scholar 

  4. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  5. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for the reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  Google Scholar 

  6. Baleta J, Mikulcic H, Klemes JJ, Urbaniec K, Dui´c N (2019) Integration of energy, water, and environmental systems for sustainable development. J Cleaner Prod 215:1424–1436

    Google Scholar 

  7. Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C (2020) Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol 11:517

    Article  Google Scholar 

  8. Bastow EL, De La Torre VSG, Maclean AE, Green RT, Merlot S, Thomine S, Balk J (2018) Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiol 177(3):1267–1276

    Article  CAS  Google Scholar 

  9. Bennett AE, Evans DM, Powell JR (2019) Potentials and pitfalls in the analysis of bipartite networks to understand plant–microbe interactions in changing environments. Funct Ecol 33(1):107–117

    Article  Google Scholar 

  10. Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917

    Article  CAS  Google Scholar 

  11. Cameselle C, Gouveia S (2019) Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater 361:95–102

    Article  CAS  Google Scholar 

  12. Cameselle C, Gouveia S, Urrejola S (2019) Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere 229:481–488

    Article  CAS  Google Scholar 

  13. Cetinkaya G, Sozen N (2011) Plant species potentially useful in the Phytostabilization process for the abandoned CMC mining site in northern Cyprus. Int J Phytoremediation 13:681–691

    Article  Google Scholar 

  14. Chaabene Z, Rorat A, Hakim IR, Bernard F, Douglas GC, Elleuch A, Vandenbulcke F, Mejdoub H (2018) Insight into the expression variation of metalresponsive genes in the seedling of date palm (Phoenix dactylifera). Chemosphere 197:123–134

    Article  CAS  Google Scholar 

  15. Chandran H, Meena M, Swapnil P (2021) Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustain Sci 13:109–186

    Google Scholar 

  16. Chen H, Zhou W, Zhu S, Liu F, Qin L, Xu C, Wang Z (2020) Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification–aerobic denitrification. Bioresour Technol 124507

    Google Scholar 

  17. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cdhyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  18. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12

    Article  Google Scholar 

  19. Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    Article  Google Scholar 

  20. DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412

    Article  CAS  Google Scholar 

  21. Deb VK, Rabbani A, Upadhyay S, et al (2020) Microbe-assisted phytoremediation in reinstating heavy metal-contaminated sites: concepts, mechanisms, challenges, and future perspectives. In: Microbial technology for health and environment, pp 161–189

    Google Scholar 

  22. Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S (2011) Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192:270–276

    CAS  Google Scholar 

  23. Dutta S, Datta A, Zaid A, Bhat JA (2020) Metalloids and their impact on the environment. In: Metalloids in plants. Wiley, pp 19–26

    Google Scholar 

  24. Ebbs SD, Bradfield SJ, Kumar P, White JC, Ma X (2016) Projected dietary intake of zinc, copper, and cerium from consumption of carrot (Daucus carota) exposed to metal oxide nanoparticles or metal ions. Front Plant Sci 7:188

    Article  Google Scholar 

  25. Eissa MA, Negim OE (2018) Heavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil. J Soil Sci Plant Nutr 18:1097–1107

    CAS  Google Scholar 

  26. Ekta P, Modi NR (2018) A review of phytoremediation. J. Pharmacogn. Phytochem. 7(4):1485–1489

    CAS  Google Scholar 

  27. Emamverdian A, Ding Y, Mokhberdoran F, **e Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J

    Google Scholar 

  28. Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41(5):1201–1232

    Article  CAS  Google Scholar 

  29. Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Environ Risk Assess Soil Contam 3:485–516

    Google Scholar 

  30. Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583:352–368

    Article  CAS  Google Scholar 

  31. Finkel OM, Castrillo G, Paredes SH, Gonz´ alez IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Google Scholar 

  32. Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12:635–647

    Article  CAS  Google Scholar 

  33. Genchi G, Sinicropi MS, Lauria G et al (2020) The efects of cadmium toxicity. Int J Environ Res Public Health 17:3782

    Article  CAS  Google Scholar 

  34. Goher ME, AM AEM, Abdel-Satar AM, Ali MH, Hussian AE, Napiorkowska- ´ Krzebietke A (2016) Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. J Elementology 21(3)

    Google Scholar 

  35. Gomes MA, da C, Hauser-Davis RA, de Souza AN, Vitoria AP (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol. Environ Saf 134:133–147

    Google Scholar 

  36. Gong X, Huang D, Liu Y et al (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308–11316

    Article  CAS  Google Scholar 

  37. Guo J, Dai X, Xu W, Ma M (2008) Overexpressing gsh1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  38. Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism, and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  39. Hasan M, Uddin M, Ara-Sharmeen I, Alharby FH, Alzahrani Y, Hakeem KR, Zhang L (2019) Assisting phytoremediation of heavy metals using chemical amendments. Plants 8(9):295

    Article  CAS  Google Scholar 

  40. Hasegawa H, Rahman I, Rahman M (2016) Environmental remediation technologies for metal-contaminated soils. Springer

    Google Scholar 

  41. Hejna M, Moscatelli A, Stroppa N, Onelli E, Pilu S, Baldi A, Rossi L (2020) Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere 241:125018

    Google Scholar 

  42. Hoang HG, Lin C, Tran HT, Chiang CF, Bui XT, Cheruiyot NK, Shern CC, Lee CW (2020) Heavy metal contamination trends in surface water and sediments of a river in a highly industrialized region. Environ Technol Innov 20:101043

    Article  CAS  Google Scholar 

  43. Huang D, Qin X, Peng Z et al (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237

    Article  CAS  Google Scholar 

  44. Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018) Microbe and plant assisted remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628:1582–1599

    Article  Google Scholar 

  45. Ismail NI, Abdullah SRS, Idris M, Kurniawan SB, Halmi MIE, Sbani NHA, ..., Hasan HA (2020) Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. J Environ Manage 267:110643

    Google Scholar 

  46. Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F (2019) Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicol Environ Saf 181:508–517

    Article  CAS  Google Scholar 

  47. Jeevanantham S, Saravanan A, Hemavathy RV, Kumar PS, Yaashikaa PR, Yuvaraj D (2019) Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innov 13:264–276

    Article  Google Scholar 

  48. Jegatheesan V, Ravishankar H, Shu L, Wang J (2016) Application of green and physico-chemical technologies in treating water polluted by heavy metals. In: Green technologies for sustainable water management. American Society of Civil Engineers, Reston, VA, pp 579–614

    Google Scholar 

  49. ** Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8(8):1336

    Article  Google Scholar 

  50. **g Y, Yan J, He H, Yang D, **ao L (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediat 16(4):321–333

    Article  CAS  Google Scholar 

  51. Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  CAS  Google Scholar 

  52. Khalid HS, Akhtar MF, Ijaz M, Iqbal M, Bukhari SA, Mustafa G, Shaukat K (2021) Role of metal-binding proteins and peptides in bioremediation of toxic metals. In: Handbook of bioremediation. Academic Press, pp 437–444

    Google Scholar 

  53. Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  Google Scholar 

  54. Kumari A, Lal B, Rai UN (2016) Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon India. Int J Phytoremediat 18:592–597

    Article  CAS  Google Scholar 

  55. Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886

    Article  CAS  Google Scholar 

  56. Li X, Yang Y, Gao B, Zhang M (2015) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS ONE 10:0122884

    Google Scholar 

  57. Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res Int

    Google Scholar 

  58. Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643

    Article  CAS  Google Scholar 

  59. Liu S, Yang B, Liang Y, **ao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res 1–17

    Google Scholar 

  60. Liu X, Zhao J, Jiang P (2022) Easy removal of epiphytic bacteria on Ulva (Ulvophyceae, Chlorophyta) by Vortex with Silica Sands. Microorganisms 10(2):476. https://doi.org/10.3390/microorganisms10020476

    Article  CAS  Google Scholar 

  61. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  CAS  Google Scholar 

  62. Man YB, Lei KM, Chow KL, Leung AOW, Mo WY, Wong MH (2020) Ecological risks of heavy metals/metalloid discharged from two sewage treatment works to Mai Po Ramsar site, South China. Environ Monit Assess 192:1–14

    Article  Google Scholar 

  63. Manara A (2012) Plants and heavy metals. Signal Transduct 2754

    Google Scholar 

  64. Manoj SR, Karthik C, Kadirvelu K et al (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254:109779

    Article  CAS  Google Scholar 

  65. Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    Article  CAS  Google Scholar 

  66. Mirza N, Mahmood Q, Maroof Shah M, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J

    Google Scholar 

  67. Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H (2019) The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Environ Sci Pollut Res 26:10776–10789

    Article  CAS  Google Scholar 

  68. Mukaro E, Nyakudya IW, Jimu L (2017) Edaphic conditions, aboveground carbon stocks and plant diversity on nickel mine tailings dump vegetated with Senegalia polyacantha (Willd.) Seigler & Ebinger. L Degrad Dev

    Google Scholar 

  69. Munir I, Faisal M (2016) Plant growth-promoting bacteria: a good source for phytoremediation of metal-contaminated soil. Phytoremediation. Springer International Publishing, Cham, pp 119–129

    Google Scholar 

  70. Mustafa A, Imran M, Ashraf M, Mahmood K (2018) Perspectives of using l-tryptophan for improving the productivity of agricultural crops: a review. Pedosphere 28:16–34

    Google Scholar 

  71. Naghipour D, Gharibi H, Taghavi K, Jaafari J (2016) Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils. J Environ Chem Eng 4(3):3512–3518

    Article  CAS  Google Scholar 

  72. Ngo HH, Bui XT, Nghiem LD, Guo W (2020) Green technologies for sustainable water. Bioresour Technol 317:123978

    Google Scholar 

  73. Nidhin S, Udayan A, Shantkriti S (2020) Algal bioremediation of heavy metals, removal of toxic pollutants through microbiological and tertiary treatment New perspectives, Chapter 11, 279–302. Elsevier

    Google Scholar 

  74. Nzediegwu C, Prasher S, Elsayed E, Dhiman J, Mawof A, Patel R (2020) Impact of soil biochar incorporation on the uptake of heavy metals present in wastewater by spinach plants. Water Air Soil Pollut 231:1–19

    Article  Google Scholar 

  75. Oconnor D, Zheng X, Hou D, Shen Z, Li G, Miao G, Oconnell S, Guo M (2019) Phytoremediation: climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environ Int 130:104945

    Article  Google Scholar 

  76. Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  CAS  Google Scholar 

  77. Pandey VC, Bajpai O (2019) Phytoremediation: from theory toward practice. In: Phytomanagement of polluted sites. Elsevier, pp 1–49

    Google Scholar 

  78. Parnian A, Furze JN (2021) Vertical phytoremediation of wastewater using Vetiveria zizanioides L. Environ Sci Pollut Res 28(45):64150–64155

    Article  CAS  Google Scholar 

  79. Parnian A, Furze JN, Chorom M, Jaafarzadeh N (2022) Competitive Bioaccumulation by Ceratophyllum demersum L. In: Earth systems protection and sustainability, vol 2. Springer International Publishing, Cham, pp 15–30

    Google Scholar 

  80. Parnian A, Mahbod M, Prasad MNV (2023) Microplastics remediation–possible perspectives for mitigating saline environments. Microplastics Ecosphere Air Water Soil Food 465–476

    Google Scholar 

  81. Parnian A, Parnian A, Pirasteh-Anosheh H, Furze JN, Prasad MNV, Race M, Hulisz P Ferraro A (2022) Full-scale bioremediation of petroleum-contaminated soils via integration of co-composting. J Soils Sediments 22(8):2209–2218

    Google Scholar 

  82. Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stürzenbaum SR (2014) Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol C: Toxicol Pharmacol 160:75–85

    CAS  Google Scholar 

  83. Radziemska M, Koda E, Bilgin A, Vaverkov´ a MD (2018) Concept of aided phytostabilization of contaminated soils in postindustrial areas. Int J Environ Res Public Health 15(1):24

    Google Scholar 

  84. Rahman T, Seraj MF (2018) Available approaches of remediation and stabilisation of metal contamination in soil: a review. Am J Plant Sci 09:2033–2052

    Article  CAS  Google Scholar 

  85. Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    Article  CAS  Google Scholar 

  86. Rastogi A, Zivcak M, Sytar O et al (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5

    Google Scholar 

  87. Rathankumar AK, Saikia K, Cabana H, Kumar VV (2022) Surfactant-aided mycoremediation of soil contaminated with polycyclic aromatic hydrocarbons. Environ Res 209:112926

    Article  CAS  Google Scholar 

  88. Rehman F, Pervez A, Khattak BN, Ahmad R (2018) Plant growth promoting rhizobacteria impact on Typha latifolia and Phragmites australis growth and dissolved oxygen. CLEAN–Soil Air Water 46(8):1700353

    Google Scholar 

  89. Rostami S, Azhdarpoor A (2019) The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220:818–827

    Article  CAS  Google Scholar 

  90. Rue M, Paul AL, Echevarria G, van der Ent A, Simonnot MO, Morel JL (2020) Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’ from South Africa. Metallomics 12:1278–1289

    Article  CAS  Google Scholar 

  91. Sarma H, Nava AR, Prasad MNV (2019) Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environ Technol Innov 13:318–330

    Article  Google Scholar 

  92. Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PK (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:66

    Article  Google Scholar 

  93. Senthil Kumar P, Saravanan A (2017) Sustainable wastewater treatments in textile sector. In: Sustainable Fibres and Textiles

    Google Scholar 

  94. Shadman SM, Daneshi M, Shafei F et al (2019) Aptamer-based electrochemical biosensors. In: Electrochemical biosensors. Elsevier, pp 213–251

    Google Scholar 

  95. Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774

    Article  Google Scholar 

  96. Sharma B, Shukla P (2020) A comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresour Technol 320:124330

    Article  Google Scholar 

  97. Sharma P, Rath SK (2020) Potential applications of fungi in the remediation of toxic effluents from pulp and paper industries. In: Fungi bio-prospects in sustainable agriculture, environment and nanotechnology. Academic Press, pp 193–211

    Google Scholar 

  98. Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166

    Article  CAS  Google Scholar 

  99. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:2

    Article  Google Scholar 

  100. Song B, Xu P, Chen M et al (2019) Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol 49:791–824

    Article  Google Scholar 

  101. Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under As stress. IET Nanobiotechnol 11:650–655

    Article  Google Scholar 

  102. Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plantmicrobe interactions: a double-edged sword. Curr Opin Plant Biol 27:52–58

    Article  CAS  Google Scholar 

  103. Sreekumar N, Haridas A, Godwin GS, Selvaraju N (2018) Lipid enhancement in microalgae by temporal phase separation: use of indigenous sources of nutrients. Chin J Chem Eng 26(1):75–182

    Article  Google Scholar 

  104. Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  Google Scholar 

  105. Sun C, Zhang G, Zheng H, Liu N, Shi M, Luo X, Chen L, Li F, Hu S (2019) Fate of four phthalate esters with presence of Karenia brevis: uptake and biodegradation. Aquat Toxicol 206:81–90

    Article  CAS  Google Scholar 

  106. Taj ZZ, Rajkumar M (2016) Perspectives of plant growth-promoting actinomycetes in heavy metal phytoremediation. In: Plant growth promoting Actinobacteria. Springer Singapore, Singapore, pp 213e231

    Google Scholar 

  107. Tarekegn MM, Salilih FZ, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6(1):1783174

    Article  Google Scholar 

  108. Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):206

    Article  Google Scholar 

  109. Udayan A, Arumugam M, Pandey A (2017) Nutraceuticals from algae and cyanobacteria. In: Algal green chemistry. Elsevier, pp 65–89

    Google Scholar 

  110. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28e40

    Google Scholar 

  111. ur Rehman Z, Rizwan M, Ali S, Ok YS, Ishaque W, Nawaz MF, Akmal F, Waqar M (2017) Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotoxicol Environ Saf 143:236–248

    Google Scholar 

  112. Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135e146

    Google Scholar 

  113. Vandana UK, Gulzar ABM, Singha LP et al (2020) Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. Environ Sustain 3:169–178

    Article  CAS  Google Scholar 

  114. Wang L, Hou D, Shen Z, Zhu J, Jia X, Ok YS, Tack FM, Rinklebe J (2020) Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Crit Rev Environ Sci Technol 50(24):2724–2774

    Article  Google Scholar 

  115. Wang X, Shan T, Pang S (2022) Potential of Ulva prolifera in phytoremediation of seawater polluted by cesium and cobalt: an experimental study on the biosorption and kinetics. J Oceanology Limnol 40(4):1592–1599

    Article  Google Scholar 

  116. Wani SH, Sanghera GS, Athokpam H et al (2012) Phytoremediation: curing soil problems with crops. Afr J Agric Research 7

    Google Scholar 

  117. Wani W, Masoodi KZ, Zaid A et al (2018) Engineering plants for heavy metal stress tolerance. Rend Lincei Sci Fis e Nat 29:709–723

    Article  Google Scholar 

  118. **ao R, Ali A, Wang P, Li R, Tian X, Zhang Z (2019) Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (cd)and zinc (zn)in contaminated soil. Chemosphere 230:510–518

    Article  CAS  Google Scholar 

  119. Yadav M, Gupta R, Sharma RK (2019) Green and sustainable pathways for wastewater purification. In: Advances in water purification techniques. Elsevier, pp 355–383

    Google Scholar 

  120. Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers Plant Sci 11

    Google Scholar 

  121. Yang Y, Liu Y, Li Z, Wang Z, Li C, Wei H (2020) Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. Int J Environ Sci Technol 1–8

    Google Scholar 

  122. Zaid A, Ahmad B, Jaleel H et al (2020) A critical review on iron toxicity and tolerance in plants: role of exogenous Phytoprotectants. In: Plant micronutrients. Springer International Publishing, Cham, pp 83–99

    Google Scholar 

  123. Zaid A, Bhat JA, Wani SH (2020) Influence of metalloids and their toxicity impact on photosynthetic parameters of plants. In: Metalloids in plants. Wiley, pp 113–124

    Google Scholar 

  124. Zaid A, Wani SH (2019) Reactive oxygen species generation, scavenging and signaling in plant defense responses. In: Bioactive molecules in plant defense. Springer International Publishing, Cham, pp 111–132

    Google Scholar 

  125. Zango Usman U, Mukesh Y, Vandana S, Sharma JK, Sanjay P, Sidhartha D, Sharma Anil K (2020) Microbial bioremediation of heavy metals: emerging trends and recent advances. Res J Biotechnol 15:1

    Google Scholar 

  126. Zhang H, Zhao S, Li D, Xu X, Li C (2017) Genome-wide analysis of the ZRT, IRTLike Protein (ZIP) family and their responses to metal stress in Populus trichocarpa. Plant Mol Biol Reporter 35:534–549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zain Mushtaq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, Z. et al. (2024). Role of Rhizobacteria in Phytoremediation of Heavy Metal. In: Kumar, N. (eds) Heavy Metal Remediation. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53688-5_9

Download citation

Publish with us

Policies and ethics

Navigation