Recent Advances Towards Improved Microbial Bioremediation of Heavy Metal Pollution

  • Chapter
  • First Online:
Heavy Metal Remediation

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 123 Accesses

Abstract

Heavy metals refer to metals with a molecular weight of 5 times more than water. Heavy metals enter the environment through mining the metal, metal casting, and smelting industries, and they return to humans through food, meat, vegetables, and contaminated drinking water. Heavy metals are removed by physical remediation, chemical remediation, and bioremediation methods, also bioremediation is cost-effective, has easy availability, and eco-friendliness. The types of mechanism microbial bioremediation of metal are biosorption, bioaccumulation, bioleaching, biomineralization, and biotransformation. Microorganisms provide resistance to heavy metals through various mechanisms, including extracellular or intracellular sequestration, extracellular barriers, reduction, and active transport (efflux). Heavy metals affect the diversity and number of microbes in the environment, which has been studied by metagenomic methods. The consortium produces stromatolites, microbial mats, and biofilms that are resistant and bioremedicated to various metals. Microorganisms also produce nanoparticles by bioremediation of metals. Nanocomposites increase the activities of microbial biostimulation, bioaccumulation, and biotransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  2. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691

    Article  CAS  Google Scholar 

  3. Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ et al (2016) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  Google Scholar 

  4. De Buyck P-J, Van Hulle SWH, Dumoulin A, Rousseau DPL (2021) Roof runoff contamination: a review on pollutant nature, material leaching and deposition. Rev Environ Sci BioTechnol 20(2):549–606

    Article  Google Scholar 

  5. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  Google Scholar 

  6. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 12

    Google Scholar 

  7. Organization WH (2017) Guidelines for drinking-water quality: first addendum to the fourth edition

    Google Scholar 

  8. FAO (2022) Water quality for agriculture 2022 [irrigation and drainage papers]. Available from: https://www.fao.org/3/t0234e/T0234E06.htm

  9. Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  Google Scholar 

  10. Yadav M, Gupta R, Sharma RK (2019) Chapter 14—Green and sustainable pathways for wastewater purification. In: Ahuja S (ed) Advances in water purification techniques. Elsevier, pp 355–383

    Google Scholar 

  11. Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S et al (2023) Toxicity of heavy metals and recent advances in their removal: a review. Toxics 11(7):580

    Article  CAS  Google Scholar 

  12. Sreedevi P, Suresh K, Jiang G (2022) Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. J Water Process Eng 48:102884

    Article  Google Scholar 

  13. Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P et al (2015) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31(1):357–361

    Article  Google Scholar 

  14. Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10(1):314

    Article  CAS  Google Scholar 

  15. Singh N, Gadi R (2012) Bioremediation of Ni(II) and Cu(II) from wastewater by the nonliving biomass of Brevundimonas vesicularis. J Environ Chem Ecotoxicol 4(8):137–142

    CAS  Google Scholar 

  16. Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr(VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20:6628–6637

    Google Scholar 

  17. Wasi S, Tabrez S, Ahmad M (2011) Suitability of immobilized Pseudomonas fluorescens SM1 strain for remediation of phenols, heavy metals, and pesticides from water. Water Air Soil Pollut 220:89–99

    Article  CAS  Google Scholar 

  18. Kamika I, Momba MN (2013) Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 13(1):1–14

    Article  Google Scholar 

  19. Sakpirom J, Kantachote D, Nunkaew T, Khan E (2017) Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Res Microbiol 168(3):266–275

    Article  CAS  Google Scholar 

  20. Hamdan AM, Abd-El-Mageed H, Ghanem N (2021) Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Sci Rep 11(1):9314

    Article  CAS  Google Scholar 

  21. Ma H, Wei M, Wang Z, Hou S, Li X, Xu H (2020) Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. J Hazard Mater 388:122065

    Google Scholar 

  22. Njoku KL, Akinyede OR, Obidi OF (2020) Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Sci Afr 10:e00545

    Google Scholar 

  23. Talukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, Vats R et al (2020) Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 20:101050

    Article  CAS  Google Scholar 

  24. Saad MM, Saad MA, Saad BS, Zakaria FA, Husain A-RA, Abdelgaleil SA (2022) Bioremediation and microbial-assisted phytoremediation of heavy metals by endophytic Fusarium species isolated from Convolvulus arvensis. Bioremediation J 1–11

    Google Scholar 

  25. Amatussalam A, Abubacker M, Rajendran RB (2011) In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium

    Google Scholar 

  26. Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Biores Technol 171:217–226

    Article  CAS  Google Scholar 

  27. Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. Bull Environ Contam Toxicol 92(3):369–373

    Article  CAS  Google Scholar 

  28. Kartal SN, Munir E, Kakitani T, Imamura Y (2004) Bioremediation of CCA-treated wood by brown-rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus. J Wood Sci 50:182–188

    Article  CAS  Google Scholar 

  29. Srivastava S, Thakur IS (2006) Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem 38(7):1904–1911

    Article  CAS  Google Scholar 

  30. Ahmed DAE-A, Gheda SF, Ismail GA (2021) Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environ Sci Pollut Res 28:12831–12846

    Google Scholar 

  31. El-Sheekh MM, Farghl AA, Galal HR, Bayoumi HS (2016) Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei 27:401–410

    Article  Google Scholar 

  32. Ye J, **ao H, **ao B, Xu W, Gao L, Lin G (2015) Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta. Water Sci Technol 72(9):1662–1666

    Article  CAS  Google Scholar 

  33. Lakmali WGM, Athukorala ADSNP, Jayasundera KB (2022) Investigation of Pb(II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water. Water Sci Eng 15(3):237–246

    Google Scholar 

  34. El-Naggar NE-A, Hamouda RA, Saddiq AA, Alkinani MH (2021) Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Sci Rep 11(1):3555

    Google Scholar 

  35. Langston WJ, Bebianno MJ (1998) Metal metabolism in aquatic environments. Springer Science & Business Media

    Google Scholar 

  36. Rahman Z, Singh VP (2020) Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res 27:27563–27581

    Article  CAS  Google Scholar 

  37. Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170(6):1389–1416

    Article  CAS  Google Scholar 

  38. Mwandira W, Nakashima K, Kawasaki S, Arabelo A, Banda K, Nyambe I et al (2020) Biosorption of Pb(II) and Zn(II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci Rep 10(1):21189

    Article  CAS  Google Scholar 

  39. Oyewole OA, Zobeashia SSL-T, Oladoja EO, Raji RO, Odiniya EE, Musa AM. Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Appl Sci 1(8):857

    Google Scholar 

  40. Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S (2022) Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. Environ Pollut 305:119248

    Article  CAS  Google Scholar 

  41. Özdemir S, Kilinc E, Nicolaus B, Poli A (2013) Resistance and bioaccumulation of Cd2+, Cu2+, Co2+ and Mn2+ by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus. Ann Microbiol 63(4):1379–1385

    Article  Google Scholar 

  42. Vera M, Schippers A, Hedrich S, Sand W (2022) Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 106(21):6933–6952

    Article  Google Scholar 

  43. Patel F, Lakshmi B (2021) Bioleaching of copper and nickel from mobile phone printed circuit board using Aspergillus fumigatus A2DS. Braz J Microbiol 52(3):1475–1487

    Article  CAS  Google Scholar 

  44. Ehrlich H, Bailey E, Wysokowski M, Jesionowski T (2021) Forced biomineralization: a review. Biomimetics 6(3):46

    Article  CAS  Google Scholar 

  45. Zhao X, Wang M, Wang H, Tang D, Huang J, Sun Y (2019) Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. Int J Environ Res Public Health 16(2):268

    Google Scholar 

  46. Vogel M, Fischer S, Maffert A, Hübner R, Scheinost AC, Franzen C et al (2018) Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J Hazard Mater 344:749–757

    Article  CAS  Google Scholar 

  47. Ianieva O (2009) Mechanisms of bacteria resistance to heavy metals. Mikrobiolohichnyĭ Zhurnal 71:54–65

    Google Scholar 

  48. Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida. Anal Bioanal Chem 376(1):26–32

    Article  CAS  Google Scholar 

  49. Taniguchi J, Hemmi H, Tanahashi K, Amano N, Nakayama T, Nishino T (2000) Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Appl Microbiol Biotechnol 54(4):581–588

    Google Scholar 

  50. Green-Ruiz C (2006) Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97(15):1907–1911

    Google Scholar 

  51. Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32(2):191–198

    Article  CAS  Google Scholar 

  52. Kazy S, Sar P, Singh S, Sen A, D’Souza S (2002) Extracellular polysaccharides of a copper-sensitive and a copper-resistant pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 18:583–588

    Article  CAS  Google Scholar 

  53. Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Microbiol Biotechnol 33(2):221–225

    Article  CAS  Google Scholar 

  54. Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50(3):340–343

    Article  CAS  Google Scholar 

  55. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179(19):6127–6132

    Article  CAS  Google Scholar 

  56. Richau JA, Choquenet D, Fialho AM, Sá-Correia I (1997) Emergence of Cu(++)-tolerant mutants defective in gellan synthesis in Cu(++)-stressed cultures of Sphingomonas paucimobilis. Res Microbiol 148(3):251–261

    Article  CAS  Google Scholar 

  57. Gonzalez Henao S, Ghneim-Herrera T (2021) Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci 15

    Google Scholar 

  58. Vats N, Lee SF (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147(3):653–662

    Article  CAS  Google Scholar 

  59. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181(19):5891–5897

    Article  CAS  Google Scholar 

  60. Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145(3):831–842

    Article  CAS  Google Scholar 

  61. Oger C, Mahillon J, Petit F (2003) Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS 257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). FEMS Microbiol Ecol 43(2):173–183

    Article  CAS  Google Scholar 

  62. Ybarra G, Webb R (1999) Effects of divalent metal cations and resistance mechanisms of the cyanobacterium Synechococcus sp. strain PCC 7942. J Hazard Substance Res 2(1):1

    Google Scholar 

  63. Ivanova EP, Kurilenko VV, Kurilenko AV, Gorshkova NM, Shubin FN, Nicolau DV et al (2002) Tolerance to cadmium of free-living and associated with marine animals and eelgrass marine gamma-proteobacteria. Curr Microbiol 44:357–362

    Article  CAS  Google Scholar 

  64. Lima AIG, Corticeiro SC, Figueira EMdAP (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microbial Technol 39(4):763–769

    Google Scholar 

  65. Cha J-S, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci 88(20):8915–8919

    Article  CAS  Google Scholar 

  66. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  Google Scholar 

  67. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353

    Article  CAS  Google Scholar 

  68. Gupta A, Phung LT, Chakravarty L, Silver S (1999) Mercury resistance in Bacillus cereus RC607: transcriptional organization and two new open reading frames. J Bacteriol 181(22):7080–7086

    Article  CAS  Google Scholar 

  69. Carpentier W, Sandra K, De Smet I, Brige A, De Smet L, Van Beeumen J (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69(6):3636–3639

    Article  CAS  Google Scholar 

  70. Lloyd JR, Sole V, Van Praagh C, Lovley D (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66(9):3743–3749

    Article  CAS  Google Scholar 

  71. Sugio T, Tsujita Y, Katagiri T, Inagaki K, Tano T (1988) Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans. J Bacteriol 170(12):5956–5959

    Article  CAS  Google Scholar 

  72. Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe (III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66(5):2248–2251

    Article  CAS  Google Scholar 

  73. Song H-P, Li X-G, Sun J-S, Xu S-M, Han X (2008) Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72(4):616–621

    Google Scholar 

  74. Slobodkina G, Bonch-Osmolovskaya E, Slobodkin A (2007) Reduction of chromate, selenite, tellurite, and iron(III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1. Microbiology 76:530–534

    Article  CAS  Google Scholar 

  75. Michel C, Giudici-Orticoni M-T, Baymann F, Bruschi M (2003) Bioremediation of chromate by sulfate-reducing bacteria, cytochromes c3 and hydrogenases. Water Air Soil Pollut Focus 3:161–169

    Article  CAS  Google Scholar 

  76. Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci 89(20):9474–9478

    Article  CAS  Google Scholar 

  77. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321

    Article  CAS  Google Scholar 

  78. Roux M, Sarret Gr, Pignot-Paintrand I, Fontecave M, Coves J (2001) Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67(2):769–773

    Google Scholar 

  79. Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A et al (2023) Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 14

    Google Scholar 

  80. Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D (2021) Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment—a review. Ecotoxicol Environ Saf 226:112863

    Article  CAS  Google Scholar 

  81. Pinto E, Sigaud-kutner TC, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae 1. J Phycol 39(6):1008–1018

    Article  CAS  Google Scholar 

  82. Slawson RM, Trevors JT, Lee H (1992) Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbiol 158:398–404

    Article  CAS  Google Scholar 

  83. Smirnova G (2005) Distribution of bacteria resistant to oxygen-containing anions-xenobiotics. Mikrobiolohichnyi Zhurnal 67(5):11–18

    Google Scholar 

  84. Brown N, Shih Y-C, Leang C, Glendinning K, Hobman J, Wilson J (2002) Mercury transport and resistance. Biochem Soc Trans 30(4):715–718

    Article  CAS  Google Scholar 

  85. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26(3):311–325

    Article  CAS  Google Scholar 

  86. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  Google Scholar 

  87. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  Google Scholar 

  88. Gomathy M, Sabarinathan K (2010) Microbial mechanisms of heavy metal tolerance-a review. Agric Rev 31(2)

    Google Scholar 

  89. Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018

    Google Scholar 

  90. Escárcega-González CE, Garza-Cervantes JA, Vázquez-Rodríguez A, Morones-Ramírez JR (2018) Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int J Polym Sci 2018

    Google Scholar 

  91. Albelda-Berenguer M, Monachon M, Joseph E (2019) Siderophores: from natural roles to potential applications. Adv Appl Microbiol 106:193–225

    Article  CAS  Google Scholar 

  92. Hu X, Boyer GL (1996) Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62(11):4044–4048

    Article  CAS  Google Scholar 

  93. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    Article  CAS  Google Scholar 

  94. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway. Environ Microbiol 11(5):1079–1091

    Article  CAS  Google Scholar 

  95. Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44(14):6320–6339

    Article  CAS  Google Scholar 

  96. Braud A, Geoffroy V, Hoegy F, Mislin G, Schalk I (2010) The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ Microbiol Rep 2:419–425

    Article  CAS  Google Scholar 

  97. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249

    Article  CAS  Google Scholar 

  98. Tripathi M, Singh DN, Vikram S, Singh VS, Kumar S (2018) Metagenomic approach towards bioprospection of novel biomolecule(s) and environmental bioremediation. Annu Res Rev Biol 1–12

    Google Scholar 

  99. Bharagava RN, Purchase D, Saxena G, Mulla SI (2019) Chapter 26—Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Academic Press, pp 459–477

    Google Scholar 

  100. Hauptmann AL, Sicheritz-Pontén T, Cameron KA, Bælum J, Plichta DR, Dalgaard M et al (2017) Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet. Environ Res Lett 12(7):074019

    Article  Google Scholar 

  101. Datta S, Rajnish KN, Samuel MS, Pugazlendhi A, Selvarajan E (2020) Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environ Chem Lett 18:1229–1241

    Article  CAS  Google Scholar 

  102. Sharma P, Kumar S, Pandey A (2021) Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: a review. J Environ Chem Eng 9(4):105684

    Article  CAS  Google Scholar 

  103. Muñoz-García A, Arbeli Z, Boyacá-Vásquez V, Vanegas J (2022) Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. Mar Pollut Bull 184:114204

    Article  Google Scholar 

  104. Li L, Meng D, Yin H, Zhang T, Liu Y (2023) Genome-resolved metagenomics provides insights into the ecological roles of the keystone taxa in heavy-metal-contaminated soils. Front Microbiol 14

    Google Scholar 

  105. Drewniak L, Krawczyk PS, Mielnicki S, Adamska D, Sobczak A, Lipinski L et al (2016) Physiological and metagenomic analyses of microbial mats involved in self-purification of mine waters contaminated with heavy metals. Front Microbiol 7

    Google Scholar 

  106. Liu C, Li B, Chen X, Dong Y, Lin H (2022) Insight into soilless revegetation of oligotrophic and heavy metal contaminated gold tailing pond by metagenomic analysis. J Hazard Mater 435:128881

    Article  CAS  Google Scholar 

  107. Bouchez T, Blieux A, Dequiedt S, Domaizon I, Dufresne A, Ferreira S et al (2016) Molecular microbiology methods for environmental diagnosis. Environ Chem Lett 14:423–441

    Article  CAS  Google Scholar 

  108. Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414

    Article  CAS  Google Scholar 

  109. Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81

    Article  CAS  Google Scholar 

  110. Wang X, Gao P, Li D, Liu J, Yang N, Gu W et al (2019) Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids. Ecotoxicol Environ Saf 185:109685

    Article  CAS  Google Scholar 

  111. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10):1389–1414

    Article  CAS  Google Scholar 

  112. Agrawal PK, Agrawal S, Shrivastava R (2015) Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech 5(6):853–866

    Google Scholar 

  113. Jarosławiecka AK, Piotrowska-Seget Z (2022) The Effect of Heavy Metals on Microbial Communities in Industrial Soil in the Area of Piekary Šląskie and Bukowno (Poland). Microbiol Res 13(3):626–642

    Article  Google Scholar 

  114. Zhang M, Zhang T, Zhou L, Lou W, Zeng W, Liu T et al (2022) Soil microbial community assembly model in response to heavy metal pollution. Environ Res 213:113576

    Article  CAS  Google Scholar 

  115. Priyadarshanee M, Das S (2021) Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review. J Environ Chem Eng 9(1):104686

    Article  CAS  Google Scholar 

  116. Naureen A, Rehman A (2016) Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment. World J Microbiol Biotechnol 32:1–9

    Article  CAS  Google Scholar 

  117. Tasleem M, El-Sayed A-AA, Hussein WM, Alrehaily A (2022) Bioremediation of chromium-contaminated groundwater using chromate reductase from Pseudomonas putida: an in silico approach. Water 15(1):150

    Google Scholar 

  118. Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S (2019) Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules 24(14):2617

    Google Scholar 

  119. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl Environ Microbiol 69(6):3280–3287

    Article  CAS  Google Scholar 

  120. Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Centre 43(1):69

    Google Scholar 

  121. Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222

    Article  Google Scholar 

  122. Prajapati NK, Agnihotri AK, Basak N (2023) Microbial induced calcite precipitation (MICP) a sustainable technique for stabilization of soil: a review. Mater Today: Proc

    Google Scholar 

  123. Chaparro-Acuña SP, Becerra-Jiménez ML, Martínez-Zambrano JJ, Rojas-Sarmiento HA (2018) Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agron 67(2):277–288

    Article  Google Scholar 

  124. Omoregie AI, Palombo EA, Nissom PM (2021) Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environ Eng Res 26(6)

    Google Scholar 

  125. Omoregie AI, Ngu LH, Ong DEL, Nissom PM (2019) Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatal Agric Biotechnol 17:247–255

    Article  Google Scholar 

  126. Rajasekar A, Moy CK, Wilkinson S (eds) (20017) Stimulation of indigenous carbonate precipitating bacteria for ground improvement. IOP conference series: earth and environmental science. IOP Publishing

    Google Scholar 

  127. Görgen S, Benzerara K, Skouri-Panet F, Gugger M, Chauvat F, Cassier-Chauvat C (2021) The diversity of molecular mechanisms of carbonate biomineralization by bacteria. Disc Mater 1:1–20

    Google Scholar 

  128. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4

    Article  Google Scholar 

  129. Ng W-S, Lee M-L, Hii S-L (2012) An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. Int J Civ Environ Eng 6(2):188–194

    Google Scholar 

  130. Maity JP, Chen G-S, Huang Y-H, Sun A-C, Chen C-Y (2019) Ecofriendly heavy metal stabilization: microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous bacteria. Geomicrobiol J 36(7):612–623

    Article  Google Scholar 

  131. Gangola S, Sharma A, Bhatt P, Khati P, Chaudhary P (2018) Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci Rep 8(1):12755

    Article  Google Scholar 

  132. Bhatt P, Sethi K, Gangola S, Bhandari G, Verma A, Adnan M et al (2022) Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. J Biomol Struct Dyn 40(7):3285–3295

    Article  CAS  Google Scholar 

  133. Verma S, Bhatt P, Verma A, Mudila H, Prasher P, Rene ER (2021) Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Technol Environ Policy 1–23

    Google Scholar 

  134. Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  Google Scholar 

  135. Wu C, Li F, Yi S, Ge F (2021) Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: advances and ecological risk assessment. J Environ Manage 296:113185

    Article  CAS  Google Scholar 

  136. Shehata M (2018) Using recombinant E. coli displaying surface heavy metal binding proteins for removal of Pb2+ from contaminated water: 北海道大学

    Google Scholar 

  137. Shahpiri A, Mohammadzadeh A (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68(3):145–152

    Article  CAS  Google Scholar 

  138. Miglani GS (2017) Genome editing in crop improvement: Present scenario and future prospects. J Crop Improv 31(4):453–559

    Article  CAS  Google Scholar 

  139. Lashani E, Amoozegar MA, Turner RJ, Moghimi H (2023) Use of microbial consortia in bioremediation of metalloid polluted environments. Microorganisms 11(4):891

    Article  CAS  Google Scholar 

  140. Zhang S, Merino N, Okamoto A, Gedalanga P (2018) Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb Biotechnol 11(5):833–847

    Article  Google Scholar 

  141. Harrison JJ, Ceri H, Stremick CA, Turner RJ (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6(12):1220–1227

    Article  CAS  Google Scholar 

  142. Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotech 9(21):3140–3143

    Google Scholar 

  143. Muneer B, JIqbal M, Shakoori F, Shakoori A (2013) Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater. Pak J Zoology 45(1)

    Google Scholar 

  144. Li M, Yao J, Sunahara G, Hawari J, Duran R, Liu J et al (2022) Novel microbial consortia facilitate metalliferous immobilization in non-ferrous metal(loid)s contaminated smelter soil: efficiency and mechanisms. Environ Pollut 313:120042

    Article  CAS  Google Scholar 

  145. Shi L-D, Lv P-L, Wang M, Lai C-Y, Zhao H-P (2020) A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. Sci Total Environ 732:139310

    Article  CAS  Google Scholar 

  146. Pande V, Pandey SC, Sati D, Bhatt P, Samant M (2022) Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front Microbiol 13:824084

    Article  Google Scholar 

  147. Arshad F, Selvaraj M, Zain J, Banat F, Haija MA (2019) Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep Purif Technol 209:870–880

    Article  CAS  Google Scholar 

  148. Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review. Environ Sci Nano 5(2):257–278

    Article  CAS  Google Scholar 

  149. Cao X, Alabresm A, Chen YP, Decho AW, Lead J (2020) Improved metal remediation using a combined bacterial and nanoscience approach. Sci Total Environ 704:135378

    Article  CAS  Google Scholar 

  150. Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 14:1–17

    Article  CAS  Google Scholar 

  151. Zarime NA, Yaacob WZW, Jamil H (eds) (2018) Removal of heavy metals using bentonite supported nano-zero valent iron particles. AIP conference proceedings. AIP Publishing

    Google Scholar 

  152. Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y et al (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3:22–39

    Article  Google Scholar 

  153. Xue W, Huang D, Zeng G, Wan J, Zhang C, Xu R et al (2018) Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J Hazard Mater 341:381–389

    Article  Google Scholar 

  154. Cheng J, Sun Z, Yu Y, Li X, Li T (2019) Effects of modified carbon black nanoparticles on plant-microbe remediation of petroleum and heavy metal co-contaminated soils. Int J Phytorem 21(7):634–642

    Article  CAS  Google Scholar 

  155. Fan L, Song J, Bai W, Wang S, Zeng M, Li X et al (2016) Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil. Sci Rep 6(1):21027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all scientists who have efforts and research on heavy metal bioremediation and progress in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Etemadifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dianatdar, F., Etemadifar, Z. (2024). Recent Advances Towards Improved Microbial Bioremediation of Heavy Metal Pollution. In: Kumar, N. (eds) Heavy Metal Remediation. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53688-5_6

Download citation

Publish with us

Policies and ethics

Navigation