An Introduction to Heavy Metals and Oxidative Stress in Ageing and Cancer: A Role for Detoxification Through Diet

  • Chapter
  • First Online:
Heavy Metal Remediation

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 101 Accesses

Abstract

Ever wonder why there is so much variation among adults of the same age, while there is much less variation among children of a similar age? The good news is that it's not just genetics—it’s largely to do with lifestyle. Science has shown that your chronological age and your biological age are two separate things. So, what ages you? There are a number of factors that are involved in this mysterious process. Any kind of illness or disease ages you significantly because of the stress it puts on your body; naturally, degenerative diseases are the most destructive of all. Obesity and a poor diet with high fat content (which can contribute to heart disease and cause skin cell senescence); dehydration (which is associated with chronic disease, biological ageing, increased mortality); alcohol consumption (which accelerates biological ageing), regular use of hard drugs like LSD [lysergic acid diethylamide], cocaine & heroin (which cause a decline in the brain among other organ functions); childbirth (which is associated with shorter telomere length, a marker of cellular ageing); and, other internal or external stressors like lack of physical exercise (which increases your risk of chronic diseases) and exposure to heavy metals (which can cause oxidative stress and induce cell senescence), are all contributors to ageing. What can you do to slow down ageing? Some anti-ageing tips are eating a Mediterranean diet; including organic superfoods in your daily diet; taking Greek superherbs in teas; drinking matcha green tea; and taking resveratrol supplements derived from grapes. Superfoods are generally rich in amino acids, sugars, essential fatty acids, vitamins, minerals, and antioxidants. Superherbs are rich in phytochemicals with antioxidant properties. Antioxidants help the body to eliminate free radicals, which contribute to ageing by causing cellular damage and oxidative stress. They can also be involved in triggering cancer. Matcha green tea contains antioxidants (polyphenols) that reduce UV damage in your skin and resveratrol is an antioxidant that scavenges free radicals, which contribute to ageing in the skin. Both are known to have anti-cancer qualities, too, since the generation of free radicals can activate apoptotic pathways resulting in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott ML, Caspi A, Houts RM et al (2021) Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging 1:295–308. https://doi.org/10.1038/s43587-021-00044-4

    Article  Google Scholar 

  2. Karasik D et al (2005) Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures. J Gerontol Series A 60(5):574–587. https://doi.org/10.1093/gerona/60.5.574

    Article  Google Scholar 

  3. Bachi K, Sierra S, Volkow ND, Goldstein RZ, Alia-Klein N (2017) Is biological aging accelerated in drug addiction? Curr Opin Behav Sci 13:34-39. https://doi.org/10.1016/j.cobeha.2016.09.007. PMID: 27774503; PMCID: PMC5068223

  4. Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2(2):1143-211. https://doi.org/10.1002/cphy.c110025. PMID: 23798298; PMCID: PMC4241367

  5. Dmitrieva NI, Gagarin A, Liu D, Wu CO, Boehm M (2023) Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. EBioMedicine. 87:104404. https://doi.org/10.1016/j.ebiom.2022.104404. Epub 2023 Jan 2. PMID: 36599719; PMCID: PMC9873684

  6. Gu C, Coomans CP, Hu K, Scheer FAJL, Stanley HE, Meijer JH (2015) Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice. Proc Natl Acad Sci 112(8):2320–2324. https://doi.org/10.1073/pnas.1424706112

    Article  CAS  Google Scholar 

  7. Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713. https://doi.org/10.1016/j.cell.2014.10.039

    Article  CAS  Google Scholar 

  8. Liang Y, Gu T, Peng S, Lin Y, Liu JB, Wang X, Huang X, Zhang X, Zhu J, Zhao L, Fan C, Wang G, Gu X, Lin JD (2022) p16INK4a plays critical role in exacerbating inflammation in high fat diet induced skin. Oxidative Med Cell Longevity 3415528(20 pages). https://doi.org/10.1155/2022/3415528

  9. Pollack AZ et al (2018) Parity associated with telomere length among US reproductive age women. Hum Reprod 33(4):736–744. https://doi.org/10.1093/humrep/dey024

    Article  CAS  Google Scholar 

  10. Tam BT, Morais JA, Sylvia Santosa S (2020) Obesity and ageing: two sides of the same coin. Obesity Rev 21(4). https://doi.org/10.1111/obr.12991

  11. Topiwala A, Taschler B, Ebmeier KP et al (2022) Alcohol consumption and telomere length: mendelian randomization clarifies alcohol’s effects. Mol Psychiatry 27:4001–4008. https://doi.org/10.1038/s41380-022-01690-9

    Article  CAS  Google Scholar 

  12. Cui H, Kong Y, Zhang H, 2012. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012, 646354. https://doi.org/10.1155/2012/646354. Epub 2011 Oct 2. PMID: 21977319; PMCID: PMC3184498

  13. Brand FN, Kiely DK, Kannel WB, Myers RH (1992) Family patterns of coronary heart disease mortality: the Framingham longevity study. J Clin Epidemiol 4:169–174

    Article  Google Scholar 

  14. Evert J, Lawler E, Bogan H, Perls T (2003) Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci 58:232–237

    Article  Google Scholar 

  15. Barzilai N, Atzmon G, Schechter C et al (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290:2030–2040

    Article  CAS  Google Scholar 

  16. Anstey K, Lord S, Smith G (1996) Measuring human functional age: a review of empirical findings. Exp Aging Res 22:245–266

    Google Scholar 

  17. de Toda IM, Maté I, Vida C, Cruces J, De la Fuente M (2016) Immune function parameters as markers of biological age and predictors of longevity. Aging (Albany NY) 8(11):3110–3119. https://doi.org/10.18632/aging.101116. PMID: 27899767; PMCID: PMC5191888

  18. Shephard R (2002) Constitution or environment? In: Shephard R (ed) Gender, physical activity, and aging. CRC Press, Boca Raton (FL), pp 151–174

    Google Scholar 

  19. Muraki K, Nyhan K, Han L, Murnane JP (2012) Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol 2:135. https://doi.org/10.3389/fonc.2012.00135. PMID: 23061048; PMCID: PMC3463808

  20. Vaiserman A, Krasnienkov D (2021) Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet 21(11):630186. https://doi.org/10.3389/fgene.2020.630186. PMID: 33552142; PMCID: PMC7859450

  21. Sell DR, Lane MA, Johnson WA, Masoro EJ, Mock OB, Reiser KM, Fogarty JF, Cutler RG, Ingram DK, Roth GS, Monnier VM (1996) Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci USA 93(1):485–490. https://doi.org/10.1073/pnas.93.1.485.PMID:8552666;PMCID:PMC40263

    Article  CAS  Google Scholar 

  22. Suvarna HIS, Moodithaya S, Sharma R (2017) Metabolic and cardiovascular ageing indices in relation to glycated haemoglobin in healthy and diabetic subjects. Curr Aging Sci 10(3):201–210. https://doi.org/10.2174/1874609810666170216124039. PMID: 28215180

  23. Birch-Machin MA, Bowman A (2016) Oxidative stress and ageing. Br J Dermatol 175(Suppl. 2):26–29. https://doi.org/10.1111/bjd.14906

    Article  CAS  Google Scholar 

  24. Lu YP, Lou YR, **e JG, Yen P, Huang MT, Conney AH (1997) Inhibitory effect of black tea on the growth of established skin tumours in mice: effects on tumour size, apoptosis, necrosis, and bromodeoxyuridine incorporation into DNA. Carcinogenesis 18:2163–2169

    Article  CAS  Google Scholar 

  25. Siddoo-Atwal C (2009) AT, apoptosis, and cancer: a viewpoint. Indian J Ecol 36(2):103–110

    Google Scholar 

  26. Liao W-C, Haimovitz-Friedman A, Persaud RS, McLoughlin M, Ehleiter D, Zhang N, Gatei M, Lavin M, Kolesnick R, Fuks Z (1999) Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem 274(25):17908–17917

    Article  CAS  Google Scholar 

  27. Siddoo-Atwal C (2018) Electromagnetic radiation from cellphone towers: a potential health hazard for birds, bees, and humans. In: Current understanding of apoptosis—programmed cell death. InTech. https://doi.org/10.5772/intechopen.76084

  28. Siddoo-Atwal C (2017A) Heavy metal carcinogenesis: a possible mechanistic role for apoptosis. Vegetos 30(Special). https://doi.org/10.5958/2229-4473.2017.00046.5

  29. Siddoo-Atwal C (2020A) A role for heavy metal toxicity and air pollution in respiratory tract cancers. In: Heavy metal toxicity in public health. IntechOpen

    Google Scholar 

  30. Siddoo-Atwal C (2019A) Chapter 17—biological effects of uranium and its decay products on soil microbes, plants, and humans. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe interface. Springer. https://doi.org/10.1007/978-3-030-19831-2

  31. Siddoo-Atwal C (2020B). Chapter 10—Sellafield, seascale, and scandinavia: a legacy of radioactive contamination with future implications for gene evolution in affected ecosystems. In: Chen Y-C, Chen S-J (eds) Gene expression and phenotypic traits, INTECHOPEN. https://doi.org/10.5772/intechopen.82955

  32. El-Abaseri TB, Putta S, Hansen LA (2006) Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor. Carcinogenesis 27(2):225–231

    Article  CAS  Google Scholar 

  33. Li**sky W (1992) Chemistry and biology of N-nitroso compounds. Cambridge University Press

    Google Scholar 

  34. Denmeade SR, Isaacs JT (1996) Programmed cell death (apoptosis) and cancer chemotherapy. Cancer Control 3:303–309

    Article  CAS  Google Scholar 

  35. Martin KR (2006) Targeting apoptosis with dietary bioactive agents. Exp Biol Med 231:117–129

    Article  CAS  Google Scholar 

  36. Van Hogerlinden M, Rozell BL, Ahrlund-Richter L, ToftgArd R (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited rel/nuclear factor-κB signaling. Can Res 59:3299–3303

    Google Scholar 

  37. Siddoo-Atwal C (2017B) A new approach to cancer risk assessment: an overview. Lambert Academic Publishing

    Google Scholar 

  38. Sun S, Hail N, Lotan R (2004) Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 96:662–678

    Article  CAS  Google Scholar 

  39. Siddoo-Atwal C (2015) A case-study of abnormal growth formation and regression. Published online 22 Dec 2015. www.science20.com

  40. Siddoo-Atwal C, 2019B. Chapter 7—an approach to cancer risk assessment and carcinogenic potential for three classes of agricultural pesticides. In: Peshin R, Dhawan AK (eds) Natural resource management: ecological perspectives. Springer

    Google Scholar 

  41. Siddoo-Atwal C (2023) Chapter 59—a potential role for resveratrol and other phytochemicals in cancer chemoprevention and therapy; in “comprehensive clinical oncology: current practices”, 3rd edn. Libromed Panama (edited by Restrepo CJ)

    Google Scholar 

  42. Parsaeimehr A, Sargsyan E, Javidnia KA (2010) Comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules 15:1668–1678. https://doi.org/10.3390/molecules15031668

    Article  CAS  Google Scholar 

  43. Roidaki A, Kollia E, Panagopoulou E, Chiou A, Varzakas T, Markaki P, Proestos C (2016) Super foods and Super herbs: antioxidant and antifungal activity. Curr Res Nutr Food Sci. 4(Special Issue Conference October 2016). https://doi.org/10.12944/CRNFSJ.4.Special-Issue-October.19

  44. Prabakaran M, Lee KJ, An Y, Kwon C, Kim S, Yang Y, Ahmad A, Kim SH, Chung IM (2018) Changes in Soybean (Glycine max L.) flour fatty-acid content based on storage temperature and duration. Molecules. 23(10):2713. https://doi.org/10.3390/molecules23102713. PMID: 30347888; PMCID: PMC6222662

  45. Sherif M (2013) Soybean, nutrition and health. Soybean—Bio-Active Compounds. InTech. https://doi.org/10.5772/54545

  46. Simopoulos AP (2016) An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8(3):128. https://doi.org/10.3390/nu8030128. PMID: 26950145; PMCID: PMC4808858

  47. Andres A, Donovan SM, Kuhlenschmidt MS (2009) Soy isoflavones and virus infections. J Nutr Biochem 20(8):563–569. https://doi.org/10.1016/jnutbio.2009.04.004

    Article  CAS  Google Scholar 

  48. Sakai T, Kogiso M (2008) Soy Isoflavones and Immunity. J Med Invest 55(3–4):167–173. https://doi.org/10.2152/jmi.55.167

    Article  Google Scholar 

  49. Watanabe H (2013) Beneficial biological effects of miso with reference to radiation injury, cancer and hypertension. J Toxicol Pathol 26(2):91–103. https://doi.org/10.1293/tox.26.91. Epub 2013 Jul 10. PMID: 23914051; PMCID: PMC3695331

  50. Watanabe H, Shiono T, Kawamura D, Kawano K, Kajimura J, Kashimoto N, Kamiya K (2006) Radioprotective effects of melanoidine against irradiation in B6C3F1 mice. J Nagasaki Med Ass 81:296–298 (in Japanese)

    CAS  Google Scholar 

  51. Langner E, Rzeski W (2014) Biological properties of melanoidins: a review. Int J Food Prop 17(2):344–353. https://doi.org/10.1080/10942912.2011.631253

    Article  CAS  Google Scholar 

  52. Kim JS (2020) Antioxidant activity of various soluble melanoidins isolated from black garlic after different thermal processing steps. Prev Nutr Food Sci 25(3):301–309. https://doi.org/10.3746/pnf.2020.25.3.301. PMID: 33083380; PMCID: PMC7541931

  53. Brenna JT, Akomo P, Bahwere P, Berkley JA, Calder PC, Jones KD, Liu L, Manary M, Trehan I, Briend A (2015) Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF). BMC Med 13:17. https://doi.org/10.1186/s12916-015-0352-1. PMID: 25980919; PMCID: PMC4433071

  54. Sales JM, Resurreccion AV (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54(6):734-770. https://doi.org/10.1080/10408398.2011.606928. PMID: 24345046

  55. Al-Muhsen S, Clarke AE, Kagan RS (2003) Peanut allergy: an overview. CMAJ 168(10):1279–1285. Erratum in: CMAJ. 2003 Jun 10; 168(12), 1529. PMID: 12743075; PMCID: PMC154188

    Google Scholar 

  56. Djuricic I, Calder PC (2021) Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients 13(7):2421. https://doi.org/10.3390/nu13072421. PMID: 34371930; PMCID: PMC8308533

  57. Khurana S, Singh R (2021) Sunflower (Helianthus annuus) seed. In: Tanwar, B, Goyal A (eds) Oilseeds: health attributes and food applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-4194-0_5

  58. Siddoo-Atwal C, Atwal AS (2012) A possible role for honey bee products in the detoxification of mycotoxins. In: ISHS Acta Horticultura 963: I international symposium on mycotoxins in nuts and dried fruits

    Google Scholar 

  59. Gabrys J, Konecki J, Krol W, Scheller S, Shani J (1986) Free amino acids in bee hive product (propolis) as identified and quantified by gas-liquid chromatography. Pharmacol Res Commun 18(6):513–518. https://doi.org/10.1016/0031-6989(86)90146-3. PMID: 3749241

    Article  CAS  Google Scholar 

  60. Khalifa SAM, Elashal MH, Yosri N, Du M, Musharraf SG, Nahar L, Sarker SD, Guo Z, Cao W, Zou X, Abd El-Wahed AA, **ao J, Omar HA, Hegazy MF, El-Seedi HR (2012) Bee pollen: current status and therapeutic potential. Nutrients. 13(6):1876. https://doi.org/10.3390/nu13061876. PMID: 34072636; PMCID: PMC8230257

  61. Komosinska-Vassev K, Olczyk P, KaĹşmierczak J, Mencner L, Olczyk K (2015) Bee pollen: chemical composition and therapeutic application. Evid Based Complement Alternat Med 297425. https://doi.org/10.1155/2015/297425. Epub 2015 Mar 11. PMID: 25861358; PMCID: PMC4377380

  62. Kunugi H, Ali AM (2019) Royal jelly and its components promote healthy aging and longevity: from animal models to humans. Int J Mol Sci. 20(19):4662. https://doi.org/10.3390/ijms20194662. PMID: 31547049; PMCID: PMC6802361

  63. Pasupuleti VR, Sammugam L, Ramesh N, Gan SH (2017) Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev 1259510. https://doi.org/10.1155/2017/1259510. Epub 2017 Jul 26. PMID: 28814983; PMCID: PMC5549483

  64. Shahrajabian MH, Sun W, Cheng Q (2020) Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. Int J Food Prop 23(1):1961–1970. https://doi.org/10.1080/10942912.2020.1828456

    Article  CAS  Google Scholar 

  65. Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR (2022) Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol. 12:860508. https://doi.org/10.3389/fonc.2022.860508. PMID: 35359383; PMCID: PMC8960963

  66. Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB (2017) Essential oils of oregano: biological activity beyond their antimicrobial properties. Molecules 22(6):989. https://doi.org/10.3390/molecules22060989.PMID:28613267;PMCID:PMC6152729

    Article  Google Scholar 

  67. Basch E, Ulbricht C, Kuo G, Szapary P, Smith M (2003) Therapeutic applications of fenugreek. Altern Med Rev 8(1):20–27

    Google Scholar 

  68. Altuntaş E, Özgöz E, Taşer OF (2005) Some physical properties of fenugreek (Trigonella foenum-graceum L.) seeds. J Food Eng 71(1):37–43. ISSN 0260-8774. https://doi.org/10.1016/j.jfoodeng.2004.10.015

  69. Ahmad A, Alghamdi SS, Mahmood K, Afzal M (2016) Fenugreek a multipurpose crop: potentialities and improvements. Saudi J Biol Sci. 23(2):300–310. https://doi.org/10.1016/j.sjbs.2015.09.015. Epub 2015 Sep 14. PMID: 27307778; PMCID: PMC4894452

  70. Ansary J, Forbes-Hernández TY, Gil E, Cianciosi D, Zhang J, Elexpuru-Zabaleta M, Simal-Gandara J, Giampieri F, Battino M (2020) Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants (Basel) 9(7):619. https://doi.org/10.3390/antiox9070619. PMID: 32679751; PMCID: PMC7402177

  71. Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA (2011) Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med 2011:531053. https://doi.org/10.1093/ecam/nen058. Epub 2010 Oct 19. PMID: 18955364; PMCID: PMC3136577

  72. Hattarki S, Bogar C (2017) Triticum aestivum (wheat grass); a power house plant—a review. Dent J Adv Stud 05(01):025–029. https://doi.org/10.1055/s-0038-1672077

    Article  Google Scholar 

  73. Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H, Azzini E, Setzer WN, Martins N (2019) The therapeutic potential of apigenin. Int J Mol Sci 20(6):1305. https://doi.org/10.3390/ijms20061305. PMID: 30875872; PMCID: PMC6472148

  74. Taymour S, Alreshidi KSM, Elhassan Taha MM, Mohan S (2023) Broccoli: a multi-faceted vegetable for health: an in-depth review of its nutritional attributes, antimicrobial abilities, and anti-inflammatory properties. Antibiotics (Basel) 12(7):1157. https://doi.org/10.3390/antibiotics12071157. PMID: 37508253; PMCID: PMC10376324

  75. Williamson G, Faulkner K, Plumb GW (1998) Glucosinolates and phenolics as antioxidants from plant foods. Eur J Cancer Prev 7(1):17–21. PMID: 9511848

    Google Scholar 

  76. SĂĽzen S (2007) Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. In: Khan MTH (eds) Bioactive Heterocycles V. topics in heterocyclic chemistry, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2007_074

  77. Santín-Márquez R, Alarcón-Aguilar A, López-Diazguerrero NE, Chondrogianni N, Königsberg M (2019) Sulforaphane—role in aging and neurodegeneration. Geroscience. 41(5):655–670. https://doi.org/10.1007/s11357-019-00061-7. Epub 2019 Apr 2. PMID: 30941620; PMCID: PMC6885086

  78. Bito T, Okumura E, Fujishima M, Watanabe F (2020) Potential of Chlorella as a dietary supplement to promote human health. Nutrients. 12(9):2524. https://doi.org/10.3390/nu12092524. PMID: 32825362; PMCID: PMC7551956

  79. Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G (2020) Seaweeds as a functional ingredient for a healthy diet. Marine Drugs 18(6):301. https://doi.org/10.3390/md18060301. PMID: 32517092; PMCID: PMC7345263

Download references

Acknowledgements

I would like to thank Dr. Martin von Rosen (Co-Director of the Schlosspark Klinik in Germany) for introducing me to the importance of diet in detoxification during my first visit to the clinic. After attending a science conference in Bosnia & Herzogovina in 2017, I developed certain symptoms consistent with uranium/depleted uranium exposure and had to undergo a course of metal chelation therapy at the clinic accompanied by a detoxification diet rich in superfoods, superherbs, and supergreens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanda Siddoo-Atwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddoo-Atwal, C. (2024). An Introduction to Heavy Metals and Oxidative Stress in Ageing and Cancer: A Role for Detoxification Through Diet. In: Kumar, N. (eds) Heavy Metal Remediation. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53688-5_12

Download citation

Publish with us

Policies and ethics

Navigation