FMCW LiDAR for Lunar Descent Payload

  • Conference paper
  • First Online:
Space-based Lidar Remote Sensing Techniques and Emerging Technologies (LIDAR 2023)

Abstract

In this paper we present the preliminary design of a FMCW based LiDAR for applications involving approaching large planetary bodies. To our knowledge this is the first of its kind allowing within a 25 × 25 degrees Field of View a maximum measurement range beyond 1 km and a point accuracy of 5.8 mm (at 500 m). The paper focuses on the performances of our approach and details the advantages in space of a FMCW system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou H, Chen Y, Hyyppä J, Li S (2017) An overview of the laser ranging method of space laser altimeter. Infrared Phys Technol 86:147–158

    Google Scholar 

  2. Fix A et al (2019) Space lidar and space optics. CEAS Space J 11(4):359–362

    Google Scholar 

  3. Guilhot D, Ribes-Pleguezuelo P (2019) Laser technology in photonic applications for space. Instruments 3:50

    Article  Google Scholar 

  4. Bruzzi JR et al (2012) A compact laser altimeter for spacecraft landing applications. J Hopkins APL Tech Dig 30(4):331–345

    Google Scholar 

  5. Amzajerdian F et al (2016) Imaging flash lidar for autonomous safe landing and spacecraft proximity operation. In: AIAA space 2016, p 5591

    Google Scholar 

  6. https://ouster.com/products/scanning-lidar/os2-sensor/

  7. Guivernau JLR, Gonzalo IB, Margallo-Balbás E, Pandraud G (2021) High-performance akinetic parallel light field sensor for 3D imaging. In: Conference on lasers and electro-optics, OSA technical digest (Optica Publishing Group), paper ATu4K.7

    Google Scholar 

  8. Rogers C, Piggott AY, Thomson DJ, Wiser RF, Opris IE, Fortune SA, Compston AJ, Gondarenko A, Meng F, Chen X, Reed GT, Nicolaescu R (2021) A universal 3D imaging sensor on a silicon photonics platform. Nature 590:256–261

    Google Scholar 

  9. Sandborn PAM (2017) P.A.M., FMCW lidar: scaling to the chip-level and improving phase-noise-limited performance. Ph.D. dissertation, University of California, Berkeley

    Google Scholar 

  10. Edmunds J et al (2021) Miniaturized modules for space based optical communication. Proceedings of the SPIE 11678, free-space laser communications XXXIII, 116780L

    Google Scholar 

  11. Poulton C, Yaacobi A, Cole D, Byrd M, Raval M, Vermeulen D, Watts M (2017) Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt Lett 42:4091–4094

    Article  Google Scholar 

  12. Margallo Balbas E (2021) Apparatus and method for managing coherent detection from multiple apertures in a LiDAR system. U.S. patent 11016195B2

    Google Scholar 

  13. Gonzalo IB, Gonzalo IB, Margallo-Balbás E, Pandraud G (2023) In-orbit metrology instrument for surface monitoring. In: 41st ESA antenna workshop

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dutch Ministry of Economic Affairs and Climate Policy for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Pandraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Margallo, E., Silvestri, F., Ferrario, I., Rubio, J.L., Bravo, I., Pandraud, G. (2024). FMCW LiDAR for Lunar Descent Payload. In: Singh, U.N., Tzeremes, G., Refaat, T.F., Ribes Pleguezuelo, P. (eds) Space-based Lidar Remote Sensing Techniques and Emerging Technologies. LIDAR 2023. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-53618-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53618-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53617-5

  • Online ISBN: 978-3-031-53618-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation