The NASA HSRL Pathfinder Mission Concept

  • Conference paper
  • First Online:
Space-based Lidar Remote Sensing Techniques and Emerging Technologies (LIDAR 2023)

Abstract

The High-Spectral-Resolution Lidar (HSRL) Pathfinder Mission concept is designed to provide HSRL measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm. The instrument is based on Clio, the HSRL that was descoped from NASA’s Atmosphere Observing System (AOS) mission due to cost constraints. The NASA Langley Research Center (LaRC) developed the HSRL Pathfinder concept as an example of a lower-cost mission to advance the technology and demonstrate the measurement capability originally planned for AOS. Cost savings are achieved via a Class-D instrument development approach and some reductions in performance from the original Clio design. Despite these changes, the HSRL Pathfinder Mission promises to provide valuable observations for advancing studies of aerosol and cloud radiative effects, cloud microphysics, aerosol-cloud interaction, aerosol transport and speciation, and air quality. The design also enables scientifically important observations of depth-resolved ocean subsurface optical properties, snow water equivalent, and seasonal sea ice, making HSRL Pathfinder a truly multifunctional lidar mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens G, Winker D, Pelon J, Trepte C, Vane D, Yuhas C, L’ecuyer T, Lebsock M (2018) CloudSat and CALIPSO within the A-Train: ten years of actively observing the earth system. Bull Am Meteor Soc 99(3):569–581

    Article  Google Scholar 

  2. Behrenfeld MJ, Hu Y, Bisson KM, Lu X, Westberry TK (2022) Retrieval of ocean optical and plankton properties with the satellite Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor: background, data processing, and validation status. Remote Sens Environ 281:113235

    Article  Google Scholar 

  3. Burton SP, Hostetler CA, Cook AL, Hair JW, Seaman ST, Scola S, Harper DB, Smith JA, Fenn MA, Ferrare RA, Saide PE (2018) Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES. Appl Opt 57(21):6061–6075

    Article  Google Scholar 

  4. Seaman ST, Cook AL, Scola SJ, Hostetler CA, Miller I, Welch W (2015) Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar. In: Lidar Remote Sensing for Environmental Monitoring XV Proceeding of SPIE. 9612:96120H

    Google Scholar 

  5. Hunt WH, Winker DM, Vaughan MA, Powell KA, Lucker PL, Weimer C (2009) CALIPSO lidar description and performance assessment. J Atmos Oceanic Tech 26(7):1214–1228

    Article  Google Scholar 

  6. Sun X, Blair JB, Bufton JL, Faina M, Dahl S, Bérard P, Seymour RJ (2020) Advanced silicon avalanche photodiodes on NASA's global ecosystem dynamics investigation (GEDI) mission. In: Photonic Instrumentation Engineering VII Proceeding of SPIE 11287:1128713

    Google Scholar 

  7. Burton SP, Ferrare RA, Hostetler CA, Hair JW, Rogers RR, Obland MD, Butler CF, Cook AL, Harper DB, Froyd KD (2012) Aerosol classification using airborne high spectral resolution Lidar measurements–methodology and examples. Atmosp Meas Techn 5(1):73–98

    Article  Google Scholar 

  8. Roy G, Cao X (2010) Inversion of water cloud lidar signals based on accumulated depolarization ratio. Appl Opt 49(9):1630–1635

    Article  Google Scholar 

  9. Grosvenor DP, Sourdeval O, Zuidema P, Ackerman A, Alexandrov MD, Bennartz R, Boers R, Cairns B, Chiu JC, Christensen M, Deneke H (2018) Remote sensing of droplet number concentration in warm clouds: a review of the current state of knowledge and perspectives. Rev Geophys 56(2):409–453

    Article  Google Scholar 

  10. Hostetler CA, Behrenfeld MJ, Hu Y, Hair JW, Schulien JA (2018) Spaceborne lidar in the study of marine systems. Ann Rev Mar Sci 10:121–147

    Article  Google Scholar 

  11. Hu Y, Lu X, Zeng X, Stamnes SA, Neuman TA, Kurtz NT, Zhai P, Gao M, Sun W, Xu K, Liu Z (2022) Deriving snow depth from ICESat-2 LiDAR multiple scattering measurements. Front Rem Sens 3:855159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Hostetler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hostetler, C. et al. (2024). The NASA HSRL Pathfinder Mission Concept. In: Singh, U.N., Tzeremes, G., Refaat, T.F., Ribes Pleguezuelo, P. (eds) Space-based Lidar Remote Sensing Techniques and Emerging Technologies. LIDAR 2023. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-53618-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53618-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53617-5

  • Online ISBN: 978-3-031-53618-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation