Signature-Based Community Detection for Time Series

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

Abstract

Community detection for time series without prior knowledge poses an open challenge within complex networks theory. Traditional approaches begin by assessing time series correlations and maximizing modularity under diverse null models. These methods suffer from assuming temporal stationarity and are influenced by the granularity of observation intervals.

In this study, we propose an approach based on the signature matrix, a concept from path theory for studying stochastic processes. By employing a signature-derived similarity measure, our method overcomes drawbacks of traditional correlation-based techniques.

Through a series of numerical experiments, we demonstrate that our method consistently yields higher modularity compared to baseline models, when tested on the Standard and Poor’s 500 dataset. Moreover, our approach showcases enhanced stability in modularity when the length of the underlying time series is manipulated.

This research contributes to the field of community detection by introducing a signature-based similarity measure, offering an alternative to conventional correlation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert-László, B.: Network science. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 371.1987, article no. 20120375 (2013)

    Google Scholar 

  2. Tsay, R.S.: Analysis of Financial Time Series. 2nd edn. John Wiley & Sons (2005)

    Google Scholar 

  3. Prigent, J. L.: Portfolio optimization and performance analysis. CRC Press (2007)

    Google Scholar 

  4. Mantegna, R.N., Stanley, H. E.: Introduction to econophysics: correlations and complexity in finance. Cambridge University Press (1999)

    Google Scholar 

  5. Sinha, S., Chatterjee, A., Chakraborti, A., Chakrabarti, B. K.: Econophysics: An Introduction. John Wiley & Sons (2010)

    Google Scholar 

  6. Onnela, J.P., Kaski, K., Kertész, J.: Clustering and information in correlation based financial networks. In: The European Physical Journal B, vol. 38, pp. 353–362 (2004)

    Google Scholar 

  7. Heimo, T., Kaski, K., Saramäki, J.: Maximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networks. In: Physica A: Statistical Mechanics and its Applications, vol. 388(2–3), pp. 145–156 (2009)

    Google Scholar 

  8. Mehta, M. L.: Random matrices. Elsevier (2004)

    Google Scholar 

  9. Bai, Z., Silverstein, J. W.: Spectral analysis of large dimensional random matrices (Vol. 20). New York: Springer (2010). https://doi.org/10.1007/978-1-4419-0661-8

  10. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York, New York, NY (2002). https://doi.org/10.1007/b97391

    Book  Google Scholar 

  11. Lyons, T. J.: Differential equations driven by rough signals. In: Revista Matemática Iberoamericana, vol. 14(2), pp. 215-310. (1998)

    Google Scholar 

  12. Lyons, T., Ni, H., Oberhauser, H.: A feature set for streams and an application to high-frequency financial tick data. In: In Proceedings of the 2014 International Conference on Big Data Science and Computing, pp. 1–8 (2014)

    Google Scholar 

  13. Chen, K.T.: Integration of paths A faithful representation of paths by noncommutative formal power series. In: Transactions of the American Mathematical Society, vol. 89(2), pp. 395-407 (1958)

    Google Scholar 

  14. Lyons, T.: Rough paths, signatures and the modelling of functions on streams (2014). In: ar**v preprint ar**v:1405.4537

  15. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. In: Biometrika, vol. 10(4), pp. 507–521 (1915)

    Google Scholar 

  16. Yuan, S., Wang, C., Jiang, Q., Ma, J.: Community detection with graph neural network using Markov stability. In: 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 437–442. IEEE (2022)

    Google Scholar 

  17. Mantegna, R.N.: Hierarchical structure in financial markets. In: The European Physical Journal B-Condensed Matter and Complex Systems, vol. 11, pp. 193-197 (1999)

    Google Scholar 

  18. Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., Mantegna, R. N.: Networks of equities in financial markets. In: The European Physical Journal B, vol. 38, pp. 363–371 (2004)

    Google Scholar 

  19. Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.N.: A tool for filtering information in complex systems. In: Proceedings of the National Academy of Sciences, vol. 102(30), pp. 10421–10426 (2005)

    Google Scholar 

  20. Tumminello, M., Di Matteo, T., Aste, T., Mantegna, R. N.: Correlation based networks of equity returns sampled at different time horizons. In: The European Physical Journal B, vol. 55, pp. 209–217 (2007)

    Google Scholar 

  21. Laloux, L., Cizeau, P., Bouchaud, J.P., Potters, M.: Noise dressing of financial correlation matrices. In: Physical Review Letters, vol. 83(7), pp. 1467 (1999)

    Google Scholar 

  22. Utsugi, A., Ino, K., Oshikawa, M.; Random matrix theory analysis of cross correlations in financial markets. In: Physical Review E, vol. 70(2), pp. 026110 (2004)

    Google Scholar 

  23. Potters, M., Bouchaud, J.P., Laloux, L.: Financial applications of random matrix theory: Old laces and new pieces (2005). ar**v preprint physics/0507111

    Google Scholar 

  24. Livan, G., Alfarano, S., Scalas, E.: Fine structure of spectral properties for random correlation matrices: an application to financial markets. In: Physical Review E, vol. 84(1), pp. 016113 (2011)

    Google Scholar 

  25. MacMahon, M., Garlaschelli, D.: Community detection for correlation matrices. In: Physical Review X, vol. 5(11), pp. 021006 (2015)

    Google Scholar 

  26. Heimo, T., Kumpula, J.M., Kaski, K., Saramäki, J.: Detecting modules in dense weighted networks with the Potts method. In: Journal of Statistical Mechanics: Theory and Experiment, vol. 2008(08), pp. P08007 (2008)

    Google Scholar 

  27. Fenn, D.J., et al.: Dynamical clustering of exchange rates. In: Quantitative Finance, vol. 12(10), pp. 1493–1520 (2012)

    Google Scholar 

  28. Isogai, T.: Clustering of Japanese stock returns by recursive modularity optimization for efficient portfolio diversification. In: Journal of Complex Networks, vol. 2(4), pp. 557–584 (2014)

    Google Scholar 

  29. Chakraborty, A., Easwaran, S., Sinha, S.: Uncovering the hierarchical structure of the international Forex market by using similarity metric between the fluctuation distributions of currencies (2020). In: ar**v preprint ar**v:2005.02482

  30. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. In: Journal of statistical mechanics: theory and experiment, vol. 2008(10), pp. P10008 (2008)

    Google Scholar 

  31. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. In: Physical review E, vol. 70(6), pp. 066111 (2004)

    Google Scholar 

  32. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. In: Physical Review Letters, vol. 83(7), pp. 1471 (1999)

    Google Scholar 

  33. Fortunato, S.: Community detection in graphs. In: Physics reports, vol. 486(3–5), pp. 75–174 (2010)

    Google Scholar 

  34. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Random matrix approach to cross correlations in financial data. In: Physical Review E, vol. 65(6), pp. 066126 (2002)

    Google Scholar 

  35. Newman, M. E., Girvan, M.: Finding and evaluating community structure in networks. In: Physical Review E, vol. 9(2), pp. 026113 (2004)

    Google Scholar 

  36. Ni, H., Szpruch, L., Wiese, M., Liao, S., **ao, B.: Conditional sig-wasserstein GANs for time series generation (2020). In: ar**v preprint ar**v:2006.05421

  37. Levin, D., Lyons, T., Ni, H.: Learning from the past, predicting the statistics for the future, learning an evolving system (2013). In: ar**v preprint ar**v:1309.0260

  38. Chen, K.T.: Integration of paths–A faithful representation of paths by noncommutative formal power series. In: Transactions of the American Mathematical Society, vol. 89(2), pp. 395-407 (1958)

    Google Scholar 

  39. Lemercier, M., Salvi, C., Damoulas, T., Bonilla, E., Lyons, T.: Distribution regression for sequential data. In: In International Conference on Artificial Intelligence and Statistics, pp. 3754–3762. PMLR (2021)

    Google Scholar 

  40. Lyons, T., Ni, H.: Expected signature of Brownian motion up to the first exit time from a bounded domain. In: The Annals of Probability, vol. 43(5), pp. 2729–2762 (2015)

    Google Scholar 

  41. Chevyrev, I., Lyons, T.: Characteristic functions of measures on geometric rough paths. In: The Annals of Probability, vol. 44(6), pp. 4049–4082 (2016)

    Google Scholar 

  42. Chevyrev, I., Kormilitzin, A.: A primer on the signature method in machine learning (2016). In: ar**v preprint ar**v:1603.03788

  43. S &P Global Homepage. https://www.spglobal.com

Download references

Acknowledgment

The authors were partially supported by the PRIN 2022 project “Multiscale Analysis of Human and Artificial Trajectories: Models and Applications”, funded by the European Union - Next Generation EU program (CUP: D53D23008790006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gregnanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gregnanin, M., De Smedt, J., Gnecco, G., Parton, M. (2024). Signature-Based Community Detection for Time Series. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation