Base Metal (BM) and Rare Earth Elements (REE) Extraction Using Geothermal Water

  • Chapter
  • First Online:
Geothermal Fields of India

Abstract

There are several metals, base metals and rare earth elements which can be extracted using geothermal water. This chapter talks about such methods which helps to extract individual type of elements. The most popular methods are adsorption, ion exchange, solvent extraction, molecular recognition technology and magnetic segregation. Some precious metals like gold and silver are extracted from geothermal energy using heap leaching method. Heap leaching is one of the cheapest method for gold and silver extraction. For silica extraction form geothermal energy is performed using cascade method. Whereas for helium and lithium recovery swing adsorption method is world widely accepted. Ion exchange method technique is applied for the zinc and manganese removal using geothermal water. The system ends with a note on hybrid approach for base metal and rare earth element extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alakhras, F. A., Dari, K. A., & Mubarak, M. S. (2005). Synthesis and chelating properties of some poly(amidoximehydroxamic acid) resins toward some trivalent lanthanide metal ions. Journal of Applied Polymer Science, 97, 691–696.

    Article  CAS  Google Scholar 

  • An, J. W., Kang, D. J., Tran, K. T., Kim, M. J., Lim, T., & Tran, T. (2012). Recovery of lithium from Uyuni salar brine. Hydrometallurgy, 117, 64–70.

    Article  Google Scholar 

  • Aral, H., Vo, B. S., McCallum, D., Barton, T., & Norgate, T. (2009). High efficiency ion exchange water recovery for mineral industry. CSIRO Minerals, DMR-3569.

    Google Scholar 

  • Ashour, R. M., El-sayed, R., Abdel-Magied, A. F., Abdel-khalek, A. A., Ali, M., Forsberg, K., Uheida, A., Muhammed, M., & Dutta, J. (2017). Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: Kinetic and thermodynamic studies. Chemical Engineering Journal, 327, 286–296.

    Article  CAS  Google Scholar 

  • Bernardis, F. L., Grant, R. A., & Sherrington, D. C. (2005). A review of methods of separation of the platinum-group metals through their chloro-complexes. Reactive and Functional Polymers, 65(3), 205–217.

    Article  CAS  Google Scholar 

  • Berne, C., Ma, X., Licata, N. A., Neves, B. R., Setayeshgar, S., Brun, Y. V., & Dragnea, B. (2013). Physiochemical properties of Caulobacter crescentus holdfast: A localized bacterial adhesive. The Journal of Physical Chemistry B, 117, 10492–10503.

    Article  CAS  Google Scholar 

  • Bloomquist, G. R. (2006). Economic benefits of mineral extraction from geothermal brines. Washington State University Extension Energy Program.

    Google Scholar 

  • Bou-Maroun, E., Goetz-Grandmont, G. J., & Boos, A. (2006). Sorption of europium(III) and copper(II) by amesostructured silica doped with acyl-hydroxypyrazole derivatives—Extraction, kinetic and capacity studies. Colloids and Surfaces A, 287, 1–9.

    Article  CAS  Google Scholar 

  • Bukowsky, H., Uhlemann, E., & Steinborn, D. (1991). The recovery of pure lithium chloride 561 from “brines” containing higher contents of calcium chloride and magnesium 562 chloride. Hydrometallurgy, 27(3), 317–325.

    Article  CAS  Google Scholar 

  • Chen, P., Tang, S., Yue, H., Liu, C., Li, C., & Liang, B. (2017). Lithium enrichment of high Mg/Li ratio brine by precipitation of magnesium via combined CO2 mineralization and solvent extraction. Industrial and Engineering Chemistry Research, 56(19), 5668–5678.

    Article  CAS  Google Scholar 

  • Chen, Y. G., Zhu, B. H., Wu, D. B., Wang, Q. G., Yang, Y. H., Ye, W. M., & Guo, J. F. (2012). Eu(III) adsorption using di(2-ethylhexyl) phosphoric acid-immobilized magnetic GMZ bentonite. Chemical Engineering Journal, 181, 387–396.

    Article  Google Scholar 

  • Choi, S. H., Lee, K. P., & Sohn, S. H. (2003). Graft copolymer-lanthanide complexes obtained by radiation grafting on polyethylene film. Journal of Applied Polymer Science, 87, 328–336.

    Article  CAS  Google Scholar 

  • Christensen, J. J., Eatough, D. J., & Izatt, R. M. (1974). The synthesis and ion bindings of synthetic multidentate macrocyclic compounds. Chemical Reviews, 74, 351–384.

    Article  Google Scholar 

  • Das, N., & Das, D. (2013). Recovery of rare earth metals through biosorption: An overview. Journal of Rare Earths, 31, 933–943.

    Article  CAS  Google Scholar 

  • El-Awady, E. M. (2013). Recovery of rare earth elements as by-product from GATTAR (V) mineralization. MSc Thesis, Benha University.

    Google Scholar 

  • Epstein, J., Feist, E., Zmora, J., & Marcus, Y. (1981). Extraction of lithium from the dead sea. Hydrometallurgy, 6(3–4), 269–275.

    Article  CAS  Google Scholar 

  • Fukuda, H. (2019). Lithium extraction from brine with ion exchange resin and ferric phosphate. University of British Columbia.

    Google Scholar 

  • Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 13–28.

    Article  CAS  Google Scholar 

  • Hennebel, T., Boon, N., Maes, S., & Lenz, M. (2015). Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnology, 32, 121–127.

    Article  CAS  Google Scholar 

  • Hui, Z. (2000). Property of H2TiO3 type ion-exchangers and extraction of lithium from brine of natural gas wells. Chinese Journal of Applied Chemistry, 17(3), 307–309.

    Google Scholar 

  • Izatt, N. E., Bruening, R. L., Krakowiak, K. E., & Izatt, S. R. (2000). Contributions of professor Reed M. Izatt to molecular recognition technology: From laboratory to commercial application. Industrial & Engineering Chemistry Research, 39, 3405–3411.

    Google Scholar 

  • Izatt, R., Lamb, J., & Bruening, R. (1988). Comparison of bulk, emulsion, thin sheet supported, and hollo fiber supported liquid membranes in macro cycle-mediated cation separations. Separation Science and Technology, 23, 1645–1658.

    Article  CAS  Google Scholar 

  • Izatt, R. M. (2007). Charles J. Pedersen: Innovator in macrocyclic chemistry and co-recipient of the 1987 Nobel prize in chemistry. Chemical Society Reviews, 36, 143–147.

    Google Scholar 

  • Izatt, R. M., Izatt, S. R., Bruening, R. L., Izatt, N. E., & Moyer, B. A. (2014). Challenges to achievement of metal sustainability in our high-tech society. Chemical Society Reviews, 43, 2451–2475.

    Article  CAS  Google Scholar 

  • Izatt, R. M., Nelson, D., Rytting, J., Haymore, B., & Christensen, J. J. (1971). Calorimetric study of the interaction in aqueous solution of several uni-and bivalent metal ions with the cyclic polyether dicyclohexyl-18-crown-6 at 10, 25, and 40°. Journal of American Chemistry Society, 93, 1619–1623.

    Google Scholar 

  • Izatt, S. R., Bruening, R. L., & Izatt, N. E. (2012). Metal separations and recovery in the mining industry. JOM Journal of the Minerals Metals and Materials Society, 64, 1279–1284.

    Article  CAS  Google Scholar 

  • Kappes, D. (2002). Precious metal heap leach design and practice. In Proceedings of the mineral processing plant design, practice, and control (pp. 1606–1630). Society for Mining, Metallurgy, and Exploration.

    Google Scholar 

  • Kentish, S., & Stevens, G. (2001). Innovations in separations technology for the recycling and re-use of liquid waste streams. Chemical Engineering Journal, 84(2), 149–159.

    Article  CAS  Google Scholar 

  • Khawassek, Y., Eliwa, A., Gawad, E., & Abdo, S. (2015). Recovery of rare earth elements from El-Sela effluent solutions. Journal of Radiation Research and Applied Sciences, 8(4), 583–589.

    Article  Google Scholar 

  • Kondo, Y., & Kubota, M. (1992). Precipitation behavior of platinum group metals from simulated high level liquid waste in sequential denitration process. Journal of Nuclear Science and Technology, 29(2), 140–148.

    Article  CAS  Google Scholar 

  • Kotsupalo, N., Ryabtsev, A., Poroshina, I., Kurakov, A., Mamylova, E., Menzheres, L., & Korchagin, M. (2013). Effect of structure on the sorption properties of chlorine-containing form of double aluminum lithium hydroxide. Russian Journal of Applied Chemistry, 86(4), 482–487.

    Article  CAS  Google Scholar 

  • Krishnamurthy, N., & Gupta, C. K. (2004). Extractive metallurgy of rare earths. CRC Press.

    Google Scholar 

  • Lamb, J., Izatt, R., Swain, C., & Christensen, J. (1980). A systematic study of the effect of macrocycle ring size and donor atom type on the log K, .DELTA.H, and T.DELTA.S of reactions at 25.degree.C in methanol of mono-and divalent cations with crown ethers. Journal of American Chemistry Society, 102, 475–479.

    Google Scholar 

  • Lee, S. H., Jung, C. H., Shon, J. S., & Chung, H. (2000). Separation of palladium from a simulated radioactive liquid waste by precipitation using ascorbic acid. Separation Science and Technology, 35(3), 411–420.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, C., Zhang, S., Li, J., He, B., & Cui, Z. (2015). Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation. Desalination, 369, 26–36.

    Article  CAS  Google Scholar 

  • Liu, X., Zhong, M., Chen, X., & Zhao, Z. (2018). Separating lithium and magnesium in brine by aluminum-based materials. Hydrometallurgy, 176, 73–77.

    Article  CAS  Google Scholar 

  • Nishihama, S., Onishi, K., & Yoshizuka, K. (2011). Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extraction and Ion Exchange, 29(3), 421–431.

    Article  CAS  Google Scholar 

  • Note, T. (2008). Purification of helium from natural gas by pressure swing adsorption, 95(12), 4–7. https://www.jstor.org/stable/24105328

  • Paranthaman, M. P., Li, L., Luo, J., Hoke, T., Ucar, H., Moyer, B. A., & Harrison, S. (2017). Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environmental Science and Technology, 51(22), 13481–13486.

    Article  CAS  Google Scholar 

  • Pedersen, C. J. (1967). Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society, 89, 7017–7036.

    Article  CAS  Google Scholar 

  • Pelly, I. (1978). Recovery of lithium from Dead Sea brines. Journal of Applied Chemistry and Biotechnology, 28(7), 469–474.

    CAS  Google Scholar 

  • Phetla, T., Muzenda, E., & Belaid, M. (2010). A study of the variables in the optimisation of a platinum precipitation process. World Academy of Science, Engineering and Technology, 45, 248–254.

    Google Scholar 

  • Premuzic, E. T., Lin, M. S., Lian, H., & Miltenberger, R. P. (1995). Geothermal brines and sludges: A new resource. Geothermal Research Council Transactions, 19, 77–80.

    Google Scholar 

  • Rao, S. R. (2011). Resource recovery and recycling from metallurgical wastes (Vol. 7). Elsevier.

    Google Scholar 

  • Rothbaum, H. P., & Buisson, D. H. (1986). Lithium extraction from Wairakei geothermal waters. New Zealand Journal of Technology, 2, 231–235.

    CAS  Google Scholar 

  • Sitando, O., & Crouse, P. L. (2012). Processing of a Zimbabwean petalite to obtain lithium carbonate. International Journal of Mineral Processing, 102, 45–50.

    Article  Google Scholar 

  • Smith, Y. R., Bhattacharyya, D., Willhard, T., & Misra, M. (2016). Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chemical Engineering Journal, 296, 102–111.

    Article  CAS  Google Scholar 

  • Sohn, H. Y. (2016). Hydrometallurgical principles. In Reference module in materials science and materials engineering. Elsevier.

    Google Scholar 

  • Thomas, H., Reinhardt, T. P., & Segneri, B. (2015). Low temperature geothermal mineral recovery program. In Proceedings of the 40th workshop on geothermal reservoir engineering. Stanford University, Stanford, CA, USA, January 26–28, 2015.

    Google Scholar 

  • Thomas, H. P., Reinhardt, T. P., Andersen, A., & Segneri, B. (2016). Critical and strategic materials and potential importance for geothermal projects. In Proceedings of the 41st workshop on geothermal reservoir engineering. Stanford University, Stanford, CA, USA, February 22–24, 2016.

    Google Scholar 

  • USGS. (2001). U.S. geological survey minerals information: Minerals yearbook 2001 silica. 983 National Center.

    Google Scholar 

  • Wei, W., Liu, X., Sun, P., Wang, X., Zhu, H., Hong, M., Mao, Z. W., & Zhao, J. (2014). Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environmental Science & Technology.

    Google Scholar 

  • Werner, H. (1970). Contribution to the mineral extraction from supersaturated geothermal brines Salton Sea area, California. Geothermics, 2, 1651–1655.

    Article  Google Scholar 

  • Yanagase, K., Yoshinaga, T., Kawano, K., & Matsuoka, T. (1982). The recovery of lithium from geothermal water in the Hatchobaru area of Kyushu, Japan. Bulletin Chemistry Society Japan, 56, 2490–2498.

    Article  Google Scholar 

  • Yang, F., Chen, S., Shi, C., Xue, F., Zhang, X., Ju, S., & **ng, W. (2018). A facile synthesis of hexagonal spinel λ-MnO2 ion-sieves for highly selective Li+ adsorption. Processes, 6(5), 59.

    Article  Google Scholar 

  • Yi, D., **ao, L., Wang, B., Tian, Z., Zhu, B., & Yu, H. (2018). Method for quickly extracting lithium carbonate from saline lake water. Google Patents.

    Google Scholar 

  • Zandevakili, S., Ranjbar, M., & Ehteshamzadeh, M. (2014). Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy, 149, 148–152.

    Article  CAS  Google Scholar 

  • Zhang, J., Dow, N., Duke, M., Ostarcevic, E., & Gray, S. (2010). Identification of material and physical features of membrane distillation membranes for high performance desalination. Journal of Membrane Science, 349(1–2), 295–303.

    Article  CAS  Google Scholar 

  • Zhuang, W. Q., Fitts, J. P., Ajo-Franklin, C. M., Maes, S., Alvarez-Cohen, L., & Hennebel, T. (2015). Recovery of critical metals using biometallurgy. Current Opinion in Biotechnology, 33, 327–335.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriti Yadav .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, K., Sircar, A., Shah, M. (2024). Base Metal (BM) and Rare Earth Elements (REE) Extraction Using Geothermal Water. In: Geothermal Fields of India. Springer, Cham. https://doi.org/10.1007/978-3-031-53364-8_6

Download citation

Publish with us

Policies and ethics

Navigation