SEAS-Net: Segment Exchange Augmentation for Semi-supervised Brain Tumor Segmentation

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

  • 472 Accesses

Abstract

Accurate segmentation of brain tumors is crucial for cancer diagnosis, treatment planning, and evaluation. However, semi-supervised brain tumor image segmentation methods often face the challenge of mismatched distribution between labeled and unlabeled data. This study proposes a Segment Exchange Augmentation for Semi-supervised Segmentation Network (SEAS-Net) based on a teacher-student model that exchanges labeled and unlabeled data segments. This approach fosters unlabeled data to grasp general semantics from labeled data, and the consistent learning for both types notably reduces the empirical distribution gap. The SEAS-Net consists of two stages: supervised pre-training and semi-supervised segmentation. In the pre-training stage, segment exchange strategies optimize labeled images. During the semi-supervised stage, the teacher network generates pseudo-labels for unlabeled images. Subsequently, labeled and unlabeled images through segment exchange and input to the student network for generating predictive segmentation templates. Pseudo-labels and real mixed supervised signals supervise these predictions. Additionally, the discriminator after the student network enhances the reliability of prediction results. This methodology excels on the BraTS2019 and BraTS2021 datasets, effectively mitigating data distribution disparities and substantially enhancing brain tumor segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alshehhi, R., Alshehhi, A.: Quantification of uncertainty in brain tumor segmentation using generative network and bayesian active learning. In: VISIGRAPP (4: VISAPP), pp. 701–709 (2021). https://doi.org/10.5220/0010341007010709

  2. Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  3. Bai, Y., Chen, D., Li, Q., Shen, W., Wang, Y.: Bidirectional copy-paste for semi-supervised medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11514–11524 (2023). https://doi.org/10.1109/cvpr52729.2023.01108

  4. Bi, W.L., Hosny, A., Schabath, M.B., Giger, M.L., Birkbak, N.J., Mehrtash, A., Allison, I.F., others: Artificial intelligence in cancer imaging: clinical challenges and applications 69(2), 127–157 (2019). https://doi.org/10.3322/caac.21552, publisher: Wiley Online Library

  5. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  6. Bray, F., Ferlay, J., Soerjomataram, I., Siegel: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492, publisher: Wiley Online Library

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets. In: ECCV, pp. 364–380 (2018). https://doi.org/10.1007/978-3-030-01258-8_23

  9. Fan, J., Gao, B., **, H., Jiang, L.: Ucc: Uncertainty guided cross-head co-training for semi-supervised semantic segmentation (2023). https://doi.org/10.48550/ar**v.2205.10334

  10. Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: boosting instance segmentation via probability map guided copy-pasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 682–691 (2019). https://doi.org/10.1109/iccv.2019.00077

  11. Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.Y., Cubuk, E.D., Le: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021). https://doi.org/10.1109/cvpr46437.2021.00294

  12. Kohl, S., et al.: Adversarial networks for the detection of aggressive prostate cancer. ar**v preprint ar**v:1702.08014 (2017). https://doi.org/10.48550/ar**v.1702.08014

  13. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3d semantic segmentation for medical images. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015). https://doi.org/10.1109/cvpr.2015.7298965

  15. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021). https://doi.org/10.1609/aaai.v35i10.17066

  16. Ronneberger, O.: Invited talk: u-net convolutional networks for biomedical image segmentation. In: Bildverarbeitung für die Medizin 2017. I, pp. 3–3. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_3

    Chapter  Google Scholar 

  17. Shi, Y., Zhang, J., Ling, T., Lu, J., Zheng, Y., Yu, Q., Qi, L., Gao, Y.: Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation 41(3), 608–620 (2021). https://doi.org/10.1109/tmi.2021.3117888, publisher: IEEE

  18. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Advances in neural information processing systems 30 (2017). https://doi.org/10.5555/3294771.3294885

  19. Tu, P., Huang, Y., Zheng, F., He, Z., Cao, L., Shao, L.: GuidedMix-net: Semi-supervised semantic segmentation by using labeled images as reference. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2379–2387 (2022). https://doi.org/10.1609/aaai.v36i2.20137, issue: 2

  20. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai: exploring smoothness and class-separation for semi-supervised medical image segmentation. In: MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part V, pp. 34–43. Springer (2022). https://doi.org/10.1007/978-3-031-16443-9_4

  21. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  22. Zülch, K.J.: Brain tumors: their biology and pathology. Springer (2013). https://doi.org/10.1007/978-3-642-68178-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wu, W. (2024). SEAS-Net: Segment Exchange Augmentation for Semi-supervised Brain Tumor Segmentation. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation