Fuzzy Sliding Mode Control for Three-Level NPC Converters

  • Chapter
  • First Online:
Robust Control Strategies for Power Electronics in Smart Grid Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1034))

  • 31 Accesses

Abstract

Due to the high performance requirements of power converters in industrial applications, sliding mode control has drawn extensive research attention for its insensitivity against external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akagi, H., Kanazawa, Y., Nabae, A.: Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. 3, 625–630 (1984)

    Article  Google Scholar 

  2. Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998)

    Article  MathSciNet  Google Scholar 

  3. Boiko, I., Fridman, L., Pisano, A., Usai, E.: Analysis of chattering in systems with second-order sliding modes. IEEE Trans. Autom. Control 52(11), 2085–2102 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chen, S.Y., Chiang, H.H., Liu, T.S., Chang, C.H.: Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control. IEEE/ASME Trans. Mechatron. 24(2), 741–752 (2019)

    Article  Google Scholar 

  5. Dragičević, T., Vazquez, S., Wheeler, P.: Advanced control methods for power converters in DG systems and microgrids. IEEE Trans. Industr. Electron. 68(7), 5847–5862 (2020)

    Article  Google Scholar 

  6. El Khateb, A., Abd Rahim, N., Selvaraj, J., Uddin, M.N.: Fuzzy-logic-controller-based SEPIC converter for maximum power point tracking. IEEE Trans. Ind. Appl. 50(4), 2349–2358 (2014)

    Article  Google Scholar 

  7. Gui, Y., Blaabjerg, F., Wang, X., Bendtsen, J.D., Yang, D., Stoustrup, J.: Improved DC-link voltage regulation strategy for grid-connected converters. IEEE Trans. Industr. Electron. 68(6), 4977–4987 (2020)

    Article  Google Scholar 

  8. Hasanien, H.M., Matar, M.: A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system. IEEE Trans. Smart Grid 6(1), 158–165 (2014)

    Article  Google Scholar 

  9. Lee, S., Chwa, D.: Dynamic image-based visual servoing of monocular camera mounted omnidirectional mobile robots considering actuators and target motion via fuzzy integral sliding mode control. IEEE Trans. Fuzzy Syst. 29(7), 2068–2076 (2020)

    Article  Google Scholar 

  10. Leon, J.I., Vazquez, S., Franquelo, L.G.: Multilevel converters: control and modulation techniques for their operation and industrial applications. Proc. IEEE 105(11), 2066–2081 (2017)

    Article  Google Scholar 

  11. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  12. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)

    Article  MathSciNet  Google Scholar 

  13. Levant, A.: Chattering analysis. IEEE Trans. Autom. Control 55(6), 1380–1389 (2010)

    Article  MathSciNet  Google Scholar 

  14. Li, H., Ye, X.: Sliding-mode PID control of DC-DC converter. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 730–734. IEEE (2010)

    Google Scholar 

  15. Liang, D., Sun, N., Wu, Y., Liu, G., Fang, Y.: Fuzzy-sliding mode control for humanoid arm robots actuated by pneumatic artificial muscles with unidirectional inputs, saturations, and dead zones. IEEE Trans. Industr. Inf. 18(5), 3011–3021 (2021)

    Article  Google Scholar 

  16. Lin, H., Leon, J.I., Luo, W., Marquez, A., Liu, J., Vazquez, S., Franquelo, L.: Integral sliding-mode control-based direct power control for three-level NPC converters. Energies 13(1), 227 (2020)

    Article  Google Scholar 

  17. Mehreganfar, M., Saeedinia, M.H., Davari, S.A., Garcia, C., Rodriguez, J.: Sensorless predictive control of AFE rectifier with robust adaptive inductance estimation. IEEE Trans. Industr. Inf. 15(6), 3420–3431 (2018)

    Article  Google Scholar 

  18. Moreno, J.A.: A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE (2009)

    Google Scholar 

  19. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 2008 47th IEEE conference on decision and control, pp. 2856–2861. IEEE (2008)

    Google Scholar 

  20. Portillo, R., Vazquez, S., Leon, J.I., Prats, M.M., Franquelo, L.G.: Model based adaptive direct power control for three-level NPC converters. IEEE Trans. Industr. Inf. 9(2), 1148–1157 (2012)

    Article  Google Scholar 

  21. Quevedo, D.E., Aguilera, R.P., Perez, M.A., Cortes, P., Lizana, R.: Model predictive control of an AFE rectifier with dynamic references. IEEE Trans. Power Electron. 27(7), 3128–3136 (2011)

    Article  Google Scholar 

  22. Rivera, S., Kouro, S., Vazquez, S., Goetz, S.M., Lizana, R., Romero-Cadaval, E.: Electric vehicle charging infrastructure: from grid to battery. IEEE Ind. Electron. Mag. 15(2), 37–51 (2021)

    Article  Google Scholar 

  23. Shen, X., Liu, J., Alcaide, A.M., Yin, Y., Leon, J.I., Vazquez, S., Wu, L., Franquelo, L.G.: Adaptive second-order sliding mode control for grid-connected NPC converters with enhanced disturbance rejection. IEEE Trans. Power Electron. 37(1), 206–220 (2021)

    Article  Google Scholar 

  24. Shen, X., Liu, J., Luo, W., Leon, J.I., Vazquez, S., Alcaide, A.M., Franquelo, L.G., Wu, L.: High-performance second-order sliding mode control for NPC converters. IEEE Trans. Industr. Inf. 16(8), 5345–5356 (2019)

    Article  Google Scholar 

  25. Shtessel, Y., Edwards, C., Fridman, L., Levant, A., et al.: Sliding Mode Control and Observation, vol. 10. Springer (2014)

    Google Scholar 

  26. Tabart, Q., Vechiu, I., Etxeberria, A., Bacha, S.: Hybrid energy storage system microgrids integration for power quality improvement using four-leg three-level NPC inverter and second-order sliding mode control. IEEE Trans. Industr. Electron. 65(1), 424–435 (2017)

    Article  Google Scholar 

  27. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  Google Scholar 

  28. Utkin, V.I.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Industr. Electron. 40(1), 23–36 (1993)

    Article  Google Scholar 

  29. Vazquez, S., Acuna, P., Aguilera, R.P., Pou, J., Leon, J.I., Franquelo, L.G.: DC-link voltage-balancing strategy based on optimal switching sequence model predictive control for single-phase H-NPC converters. IEEE Trans. Industr. Electron. 67(9), 7410–7420 (2019)

    Article  Google Scholar 

  30. Wang, H., Chen, X., Zhao, X., Dan, H., Su, M., Sun, Y., Zhang, F., Rivera, M., Wheeler, P.: A cascade PI-SMC method for matrix converter-fed BDFIM drives. IEEE Trans. Transp. Electr. 7(4), 2541–2550 (2021)

    Article  Google Scholar 

  31. Wu, L., Liu, J., Vazquez, S., Mazumder, S.K.: Sliding mode control in power converters and drives: a review. IEEE/CAA J. Autom. Sin. 9(3), 392–406 (2021)

    Article  Google Scholar 

  32. Yin, Y., Liu, J., Sanchez, J.A., Wu, L., Vazquez, S., Leon, J.I., Franquelo, L.G.: Observer-based adaptive sliding mode control of NPC converters: an RBF neural network approach. IEEE Trans. Power Electron. 34(4), 3831–3841 (2018)

    Article  Google Scholar 

  33. Yin, Y., Vazquez, S., Marquez, A., Liu, J., Leon, J.I., Wu, L., Franquelo, L.G.: Observer-based sliding-mode control for grid-connected power converters under unbalanced grid conditions. IEEE Trans. Industr. Electron. 69(1), 517–527 (2021)

    Article  Google Scholar 

  34. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  35. Zhang, F., Huang, P.: Fuzzy-based adaptive super-twisting sliding-mode control for a maneuverable tethered space net robot. IEEE Trans. Fuzzy Syst. 29(7), 1739–1749 (2020)

    Article  Google Scholar 

  36. Zhao, L., Zheng, C., Wang, Y., Liu, B.: A finite-time control for a pneumatic cylinder servo system based on a super-twisting extended state observer. IEEE Trans. Syst., Man, Cybern. Syst. 51(2), 1164–1173 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Y., Liu, L., Hu, Z., Lin, H., Wu, L. (2024). Fuzzy Sliding Mode Control for Three-Level NPC Converters. In: Robust Control Strategies for Power Electronics in Smart Grid Applications. Lecture Notes in Electrical Engineering, vol 1034. Springer, Cham. https://doi.org/10.1007/978-3-031-53188-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53188-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53187-3

  • Online ISBN: 978-3-031-53188-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation