Synergy of Engineering and Statistics: Multimodal Data Fusion for Quality Improvement

  • Chapter
  • First Online:
Multimodal and Tensor Data Analytics for Industrial Systems Improvement

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 211))

  • 163 Accesses

Abstract

This chapter outlines the synergies achieved through the fusion of engineering and statistical approaches for quality improvement. It emphasizes the integration of data science and system theory, leveraging in-process sensing data for comprehensive process monitoring, diagnosis, and control. Multimodal data fusion is a key strategy for quality improvement, leading to root cause diagnosis, automatic compensation, and defect prevention. This approach goes beyond traditional aspects, such as change detection, off-line adjustment, and defect inspection. The chapter provides a concise overview of multimodal data fusion, highlights its recent developments and applications in data fusion for structured and unstructured high-dimensional data, and outlines challenges and opportunities in contemporary data-rich systems. Additionally, it explores future research directions, with a specific emphasis on harnessing emerging machine learning tools to enhance quality in systems with rich sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2019). MVTec AD – A comprehensive real-world dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Long Beach, California. IEEE.

    Google Scholar 

  2. Biehler, M., Lin, D., & Shi, J. (2023a). DETONATE: Nonlinear dynamic evolution modeling of time-dependent 3-dimensional point cloud profiles. IISE Transactions(just-accepted), 56(5), 541–558.

    Google Scholar 

  3. Biehler, M., Yan, H., & Shi, J. (2023b). ANTLER: Bayesian nonlinear tensor learning and modeler for unstructured, varying-size point cloud data. IEEE Transactions on Automation Science and Engineering, 21(1), 402–415. https://doi.org/10.1109/TASE.2022.3230563

  4. Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM (JACM), 58(3), 1–37.

    Article  MathSciNet  Google Scholar 

  5. Ceglarek, D., & Shi, J. (1996). Fixture failure diagnosis for autobody assembly using pattern recognition. ASME Transactions. Journal of Manufacturing Science and Engineering, 118(1), 55–66.

    Google Scholar 

  6. Ding, Y., Shi, J., & Ceglarek, D. (2002). Diagnosability analysis of multi-station manufacturing processes. Journal of Dynamic Systems, Measurement and Control, 124(1), 1–13.

    Article  Google Scholar 

  7. Ding, Y., **, J., Ceglarek, D., & Shi, J. (2005). Process-oriented tolerancing for multi-station assembly systems. IIE Transactions, 37(6), 493–508.

    Article  Google Scholar 

  8. Du, J., Yan, H., Chang, T.-S., & Shi, J. (2022). A tensor voting-based surface anomaly classification approach by using 3D point cloud data. ASME Transactions. Journal of Manufacturing Science and Engineering, 144(5).

    Google Scholar 

  9. Guo, J., Yan, H., Zhang, C., & Hoi, S. (2020). Partially observable online change detection via smooth-sparse decomposition. ar**v preprint ar**v, 2009.10645.

    Google Scholar 

  10. **, J., & Shi, J. (1999a). Feature-preserving data compression of stam** tonnage information using wavelets. Technometrics, 41(4), 327–339.

    Article  Google Scholar 

  11. **, J., & Shi, J. (1999b). State space modeling of sheet metal assembly for dimensional control. ASME Transactions. Journal of Manufacturing Science and Engineering, 121(4), 756–762.

    Article  Google Scholar 

  12. Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences, 17(5), 315–318.

    Article  Google Scholar 

  13. Li, J., & Shi, J. (2007). Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Transactions, 39(6), 681–690.

    Article  Google Scholar 

  14. Li, Z., Zhou, S., & Ding, Y. (2007). Pattern matching for variation-source identification in manufacturing processes in the presence of unstructured noise. IIE Transactions, 39(3), 251–263.

    Article  Google Scholar 

  15. Li, J., **, J., & Shi, J. (2008). Causation-based T 2 decomposition for multivariate process monitoring and diagnosis. Journal of Quality Technology, 40(1), 46–58.

    Article  Google Scholar 

  16. Liu, K., & Shi, J. (2013). Objective-oriented optimal sensor allocation strategy for process monitoring and diagnosis by multivariate analysis in a Bayesian network. IIE Transactions, 45(6), 630–643.

    Article  MathSciNet  Google Scholar 

  17. Liu, J., **, J., & Shi, J. (2009). State space modeling for 3-D variation propagation in rigid-body multistage assembly processes. IEEE Transactions on Automation Science and Engineering, 7(2), 274–290.

    Google Scholar 

  18. Liu, K., Zhang, X., & Shi, J. (2013). Adaptive sensor allocation strategy for process monitoring and diagnosis in a Bayesian network. IEEE Transactions on Automation Science and Engineering, 11(2), 452–462.

    Article  Google Scholar 

  19. Mou, S., & Shi, J. (2022). Compressed smooth sparse decomposition. INFORMS Journal on Data Science. https://doi.org/10.1287/ijds.2022.0023

  20. Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). Additive tensor decomposition considering structural data information. IEEE Transactions on Automation Science and Engineering, 19(4), 2904–2917.

    Article  Google Scholar 

  21. Mou, S., Cao, M., Bai, H., Huang, P., Shi, J., & Shan, J. (2023a). PAEDID: Patch autoencoder-based deep image decomposition for pixel-level defective region segmentation. IISE Transactions, 1–15.

    Google Scholar 

  22. Mou, S., Gu, X., Cao, M., Bai, H., Huang, P., Shan, J., & Shi, J. (2023b). RGI: Robust GAN-inversion for mask-free image inpainting and unsupervised pixel-wise anomaly detection. In The eleventh international conference on learning representations, Kigali, Rwanda.

    Google Scholar 

  23. Pan, Z., Wang, Z., & Zhe, S. (2020). Streaming nonlinear Bayesian tensor decomposition. In Conference on uncertainty in artificial intelligence, virtual online. PMLR.

    Google Scholar 

  24. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., & Gehler, P. (2022). Towards total recall in industrial anomaly detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, New Orleans, LA. IEEE.

    Google Scholar 

  25. Shi, J. (2006). Stream of variation modeling and analysis for multistage manufacturing processes. CRC Press.

    Book  Google Scholar 

  26. Shi, J. (2023). In-process quality improvement: Concepts, methodologies, and applications. IISE Transactions, 55(1), 2–21.

    Article  Google Scholar 

  27. Yan, H., Paynabar, K., & Shi, J. (2017). Anomaly detection in images with smooth background via smooth-sparse decomposition. Technometrics, 59(1), 102–114.

    Article  MathSciNet  Google Scholar 

  28. Yan, H., Paynabar, K., & Shi, J. (2018). Real-time monitoring of high-dimensional functional data streams via spatio-temporal smooth sparse decomposition. Technometrics, 60(2), 181–197.

    Article  MathSciNet  Google Scholar 

  29. Yan, H., Paynabar, K., & Shi, J. (2020). AKM2D: An adaptive framework for online sensing and anomaly quantification. IISE Transactions, 52(9), 1032–1046.

    Article  Google Scholar 

  30. Yan, H., Grasso, M., Paynabar, K., & Colosimo, B. M. (2022). Real-time detection of clustered events in video-imaging data with applications to additive manufacturing. IISE Transactions, 54(5), 464–480.

    Google Scholar 

  31. Zhang, T., & Shi, J. (2016a). Stream of variation modeling and analysis for compliant composite part assembly – Part I: Single-station processes. ASME Transactions. Journal of Manufacturing Science and Engineering, 138(12).

    Google Scholar 

  32. Zhang, T., & Shi, J. (2016b). Stream of variation modeling and analysis for compliant composite part assembly – Part II: Multistation processes. ASME Transactions. Journal of Manufacturing Science and Engineering, 138(12).

    Google Scholar 

  33. Zhou, S., Ding, Y., Chen, Y., & Shi, J. (2003a). Diagnosability study of multistage manufacturing processes based on linear mixed-effects models. Technometrics, 45(4), 312–325.

    Article  MathSciNet  Google Scholar 

  34. Zhou, S., Huang, Q., & Shi, J. (2003b). State space modeling of dimensional variation propagation in multistage machining process using differential motion vectors. IEEE Transactions on Robotics and Automation, 19(2), 296–309.

    Article  Google Scholar 

  35. Zhou, S., Chen, Y., & Shi, J. (2004). Statistical estimation and testing for variation root-cause identification of multistage manufacturing processes. IEEE Transactions on Automation Science and Engineering, 1(1), 73–83.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, J., Biehler, M., Mou, S. (2024). Synergy of Engineering and Statistics: Multimodal Data Fusion for Quality Improvement. In: Gaw, N., Pardalos, P.M., Gahrooei, M.R. (eds) Multimodal and Tensor Data Analytics for Industrial Systems Improvement. Springer Optimization and Its Applications, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-53092-0_12

Download citation

Publish with us

Policies and ethics

Navigation