A Go-Up Code Construction from Linear Codes Yielding Additive Codes for Quantum Stabilizer Codes

  • Conference paper
  • First Online:
Combinatorics, Graph Theory and Computing (SEICCGTC 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 448))

  • 50 Accesses

Abstract

Given a code C over the finite field \(\mathbb {F}_q\), where q is a power of a prime number, some constructions exist that permit us to obtain a new code from C over \(\mathbb {F}_q\) or over a subfield of \(\mathbb {F}_q\), such as subfield subcodes. However in some important applications, one needs codes over an extension field, for example in quantum error-correcting codes (QECC). We propose a technique that we call Go-Up construction, which allows us to obtain an additive or a linear code over \(\mathbb {F}_{q^m}\) from any set of m linear codes over \(\mathbb {F}_q\). We show under what condition this code is a self-orthogonal or self-dual code. Thus we are able to give new constructions of quantum stabilizer codes from our codes that are additive. We present several such classes of QECC. Our GU codes also have applications to algebraic coding theory, finite geometries, finite group theory, and also to combinatorial objects such as strongly regular graphs, and few-weight codes (see [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Google Scholar 

  2. Arrieta, A.E.: A GO-UP Construction and Applications. Ph.D. Dissertation,: Department of Mathematics. University of Puerto Rico, Rio Piedras (2021)

    Google Scholar 

  3. Arrieta, A.E., and Janwa, H.: A new construction of two-, three- and few-weight codes via our gu codes and their applications. Appl. Algebra Eng. Commun. Comput. (AAECC). final version accepted (2022)

    Google Scholar 

  4. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Google Scholar 

  5. Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of Quantum Messages, pp. 449–458. IEEE Press (2002)

    Google Scholar 

  6. Bierbrauer, J.: Introduction to Coding Theory, 2nd edn. CRC Press Taylor Francis Group (2017)

    Google Scholar 

  7. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Google Scholar 

  8. Calderbank, A.R., Shor, P., Sloane, N., Rains, E.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997)

    Google Scholar 

  9. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1106 (1996)

    Google Scholar 

  10. Delsarte, P.: On subfield subcodes of modified Reed-Solomon codes. IEEE Trans. Inf. Theory 21(5), 575–576 (1975)

    Google Scholar 

  11. Giorgetti, M., Previtali, A.: Galois invariance, trace codes and subfield subcodes. Finite Fields Their Appl. 16(2), 96–99 (2010)

    Google Scholar 

  12. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57(1), 127–137 (1998)

    Google Scholar 

  13. Gottesman, D.E.: Stabilizer Codes and Quantum Error Correction. Ph.D. Dissertation, California Institute of Technology (1997)

    Google Scholar 

  14. Hoffman, K., Kunze, R.: Linear Algebra, 2nd edn. Prentice-Hall, Inc. (1971)

    Google Scholar 

  15. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Google Scholar 

  16. Knill, E.: Non-Binary Unitary Error Bases and Quantum Codes. Los Alamos National Laboratory (1996)

    Google Scholar 

  17. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press (1994)

    Google Scholar 

  18. McWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Amsterdam (1977)

    Google Scholar 

  19. McElliece, R. J.: The Theory of Information and Coding. Addison-Wesley Publishing Company Inc. (1977)

    Google Scholar 

  20. Rains, E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45(6), 1827–1832 (1999)

    Google Scholar 

  21. Rifa, J., Zinoviev, V.A.: On lifting perfect codes. IEEE Trans. Inf. Theory 57(9), 5918–5925 (2011)

    Google Scholar 

  22. Roman, S.: Advanced Linear Algebra, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  23. Renes, J.M.:Quantum information theory. In: Lecture Notes (2015)

    Google Scholar 

  24. Schumacher, B.: Quantum coding. Phys. Rev. A 51(4) (1995)

    Google Scholar 

  25. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54, 6 (1996)

    Google Scholar 

  26. Stichtenoth, H.: Algebraic Function Fields and Codes, vol. 254. Springer Science and Business Media (2009)

    Google Scholar 

  27. Stichtenoth, H.: On the dimension of subfield subcodes. IEEE Trans. Inf. Theory 36(1), 90–93 (1990)

    Google Scholar 

  28. Trappe, W., Washinton, L.C.: Introduction to Cryptography with Coding Theory, 2nd edn. Pearson Prentice Hall (2006)

    Google Scholar 

  29. Wilde Mark, M.: From Classical to Quantum Shannon Theory. Cambridge University Press (2019)

    Google Scholar 

  30. Wilde Mark, M.: Quantum Information Theory. Cambridge University Press (2013)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their helpful comments. Preliminary research of Eddie Arrieta Arrieta was supported by a Fellowship from UPRRP-DEGI during 2019–2021. The work of Heeralal Janwa is funded in parts by the NASA grants 80NSSC20M0052, 80NSSC19M0167, 80NSSC20M0132 and 80NSSC21M0156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arrieta A. Eddie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eddie, A.A., Janwa, H. (2024). A Go-Up Code Construction from Linear Codes Yielding Additive Codes for Quantum Stabilizer Codes. In: Hoffman, F., Holliday, S., Rosen, Z., Shahrokhi, F., Wierman, J. (eds) Combinatorics, Graph Theory and Computing. SEICCGTC 2021. Springer Proceedings in Mathematics & Statistics, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-031-52969-6_37

Download citation

Publish with us

Policies and ethics

Navigation