On Decompositions of Complete 3-Uniform Hypergraphs into a Linear Forest with 4 Edges

  • Conference paper
  • First Online:
Combinatorics, Graph Theory and Computing (SEICCGTC 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 448))

  • 53 Accesses

Abstract

A 3-uniform linear forest is any hypergraph obtained by starting with a single 3-uniform edge and adding other 3-uniform edges sequentially such that each additional edge intersects with the previous hypergraph at no more than one vertex. There are nine such 3-uniform linear forests with four edges. In this paper we establish necessary and sufficient conditions for a decomposition of a complete 3-uniform hypergraph into isomorphic copies of a linear forest with four edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, P., Bryant, D., Buchanan, M.: A survey on the existence of \(G\)-designs. J. Combin. Des. 16, 373–410 (2008)

    Article  MathSciNet  Google Scholar 

  2. Armstrong, A., Bunge, R.C., Duncan, W., El-Zanati, S.I., Koe, K., Stutzman, R.: On decompositions and maximum packings of complete 3-uniform hypergraphs with the symmetric triple-star of size 4. Electron. J. Graph. Theory App. 9, 451–468 (2021)

    Google Scholar 

  3. Bailey, R.F., Stevens, B.: Hamilton decompositions of complete \(k\)-uniform hypergraphs. Discret. Math. 310, 3088–3095 (2010)

    Article  Google Scholar 

  4. Baranyai, Z.S.: On the factorization of the complete uniform hypergraph. In: Infinite and Finite Sets, Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam, vol. 10, pp. 91–108 (1975)

    Google Scholar 

  5. Bermond, J.-C., Germa, A., Sotteau, D.: Hypergraph-designs. Ars Combin. 3, 47–66 (1977)

    MathSciNet  Google Scholar 

  6. Bryant, D., Herke, S., Maenhaut, B., Wannasit, W.: Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs. Australas. J. Combin. 60, 227–254 (2014)

    MathSciNet  Google Scholar 

  7. Bryant, D.E., McCourt, T.A.: Existence results for \(G\)-designs. http://wiki.smp.uq.edu.au/G-designs/

  8. Bunge, R.C., El-Zanati, S.I., Hamanaka, L., Hatzer, C., Mills, T., Nowak, L.: On loose 4-path decompositions of complete 3-uniform hypergraphs, submitted

    Google Scholar 

  9. Bunge, R.C., El-Zanati, S.I., Jeffries, J., Vanden Eynden, C.: Edge orbits and cyclic and \(r\)-pyramidal decompositions of complete uniform hypergraphs. Discret. Math. 341, 3348–3354 (2018)

    Google Scholar 

  10. Glock, S., Kühn, D., Lo, A., Osthus, D.: The existence of designs via iterative absorption, 63 pages (2017). ar**v:1611.06827v2

  11. Glock, S., Kühn, D., Lo, A., Osthus, D.: Hypergraph \(F\)-designs for arbitrary \(F\), 72 pages (2017). ar**v:1706.01800

  12. Keevash, P.: The existence of designs, 39 pages (2018). ar**v:1401.3665v2

  13. Kuhl, J., Schroeder, M.W.: Hamilton cycle decompositions of \(k\)-uniform \(k\)-partite hypergraphs. Australas. J. Combin. 56, 23–37 (2013)

    MathSciNet  Google Scholar 

  14. Lonc, Z.: Solution of a delta-system decomposition problem. J. Combin. Theory, Ser. A 55, 33–48 (1990)

    Google Scholar 

  15. Meszka, M., Rosa, A.: Decomposing complete \(3\)-uniform hypergraphs into Hamiltonian cycles. Australas. J. Combin. 45, 291–302 (2009)

    MathSciNet  Google Scholar 

  16. Schroeder, M.W.: On Hamilton cycle decompositions of \(r\)-uniform \(r\)-partite hypergraphs. Discret. Math. 315, 1–8 (2014)

    Article  MathSciNet  Google Scholar 

  17. Wilson, R.M.: Decompositions of complete graphs into subgraphs isomorphic to a given graph. In: Nash-Williams, C.St.J.A., Sheehan, J. eds., Proceedings of the Fifth British Combinatorial Conference, pp. 647–659, Congruent Number, XV (1975)

    Google Scholar 

Download references

Acknowledgements

This research is supported by grant number A1659815 from the Division of Mathematical Sciences at the National Science Foundation. This work was done while all but the first author were participants in REU Site: Mathematics Research Experience for Pre-service and for In-service Teachers at Illinois State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Bunge .

Editor information

Editors and Affiliations

Appendix A

Appendix A

We now give the remaining \(H_k\)-decompositions not explicitly shown in Sect. 2. As with Examples 3 through 5, if \(H_k\) has \(r_k\) vertices, the \(H_k\)-blocks listed in sets \(B_k\) and \(B'_k\) are displayed as \([v_1,v_2, \ldots ,v_{r_k}]\) rather than as \(H_k[v_1,v_2, \ldots ,v_{r_k}]\).

Example 6

Let \(V \Big (K^{(3)}_{12}\Bigr ) = \mathbb {Z}_{11} \cup \{f_1\}\) and let

$$\begin{aligned} B_1 = \bigl \{&[10,3,0,1,2,6,7,8,f_1],\, [10,7,0,1,6,2,3,5,f_1],\, [9,3,0,2,4,5,7,10,f_1], \\ & [10,6,0,1,3,2,7,9,4],\, [8,4,0,3,6,7,f_1,5,10]\bigr \}, \\ B_2=\bigl \{&[f_1,0,10,1,9,2,8,3,5,7],\, [0,1,4,3,6,2,f_1,7,8,9],\, [0,1,3,2,5,4,f_1,6,8,9], \\ & [0,1,5,2,6,4,7,3,8,9],\, [1,3,9,4,5,7,0,2,6,8]\bigr \}, \\ B_3 = \bigl \{&[1,2,0,3,6,7,10,4,8,9],\, [1,8,0,2,7,5,3,9,10,f_1],\, [2,5,0,1,6,7,9,3,4,8], \\ & [3,7,0,4,f_1,5,10,6,8,9],\, [2,6,0,3,f_1,7,9,5,8,10]\bigr \}, \\ B_4=\bigl \{&[0,1,2,3,5,6,8,10,f_1,4],\, [0,1,4,f_1,8,5,7,10,2,6],\, [0,1,6,8,3,10,2,5,f_1,7], \\ & [0,1,5,6,3,2,7,9,f_1,10],\, [0,1,7,8,4,5,10,3,f_1,6]\bigr \}, \\ B_5 = \bigl \{&[0,1,f_1,4,10,3,7,9,5,6,8],\, [0,2,f_1,1,5,3,4,9,6,8,10],\, [1,5,0,2,6,3,4,10,7,8,9], \\ & [2,8,0,3,7,1,4,10,5,6,9],\, [3,10,2,4,5,1,6,9,0,8,f_1]\bigr \}. \end{aligned}$$

Then for \(k\in [1,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{12}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_1 \mapsto f_1\) and \(j \mapsto j+1 \pmod {11}\) on the vertices.

Example 7

Let \(V \Big (K^{(3)}_{14}\Bigr ) = \mathbb {Z}_{13} \cup \{f_1\}\) and let

$$\begin{aligned} B_1 = \bigl \{ &[12,3,0,1,2,8,9,10,f_1],\, [12,7,0,1,6,4,5,3,f_1],\, [4,2,0,1,10,3,11,8,f_1], \\ & [11,5,0,2,6,3,10,7,8],\, [12,10,0,1,7,2,8,4,f_1],\, [11,8,0,2,9,3,7,12,f_1], \\ & [10,6,0,3,8,4,9,2,f_1]\bigr \}, \\ B_2= \bigl \{&[f_1,0,1,8,11,10,12,2,3,7],\, [f_1,0,4,1,6,2,8,3,5,9],\, [0,1,2,3,12,4,5,6,8,10], \\ & [0,1,11,2,10,3,6,4,7,12],\, [0,1,6,2,8,5,11,3,4,10],\, [0,1,8,3,4,6,10,5,9,11], \\ & [0,1,3,4,8,6,9,5,7,10]\bigr \}, \\ B_3= \bigl \{&[3,7,0,4,f_1,5,10,12,1,8],\, [2,6,0,3,f_1,7,9,12,5,10],\, [4,8,0,3,9,11,12,f_1,1,7], \\ & [0,3,8,10,5,6,2,11,12,7],\, [1,2,0,3,6,7,10,11,12,5],\, [1,8,0,2,7,5,3,9,10,f_1], \\ & [2,5,0,1,6,7,9,3,4,8]\bigr \}, \\ B_4=\bigl \{&[0,1,2,3,5,6,7,10,f_1,4],\, [0,1,5,6,11,7,9,12,f_1,4],\, [0,1,7,10,2,6,9,12,f_1,3], \\ & [0,1,8,9,4,12,2,3,f_1,6],\, [0,1,11,7,9,6,10,2,f_1,4],\, [0,2,6,8,1,12,5,9,f_1,10], \\ & [0,2,7,9,3,4,6,1,5,11]\bigr \}, \\ B_5= \bigl \{&[0,1,2,4,7,11,f_1,3,5,6,9], [0,2,6,1,10,9,12,3,11,f_1,7], [3,8,2,f_1,0,1,4,9,6,5,12], \\ & [8,4,3,0,6,1,2,11,f_1,5,12], [11,4,3,0,9,5,6,8,12,2,f_1], [1,f_1,2,4,11,3,6,8,0,10,12], \\ & [5,3,1,0,9,2,8,10,4,6,12]\bigr \}. \end{aligned}$$

Then for \(k\in [1,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{14}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_1 \mapsto f_1\) and \(j \mapsto j+1 \pmod {13}\) on the vertices.

Example 8

Let \(V \Big (K^{(3)}_{16}\Bigr ) = \mathbb {Z}_{14} \cup \{f_1, f_2\}\) and let

$$\begin{aligned} B_1 = \bigl \{&[5,3,f_1,1,2,4,7,11,f_2],\, [5,3,f_2,1,2,4,7,11,f_1],\, [7,1,f_1,0,5,13,f_2,2,8], \\ & [13,5,0,1,4,7,8,9,2],\, [13,10,0,1,9,2,3,5,7],\, [12,4,0,2,5,6,8,13,1], \\ & [12,8,0,2,7,3,5,10,13],\, [7,3,0,11,8,6,9,13,5],\, [13,9,0,1,5,7,11,6,f_2] \bigr \}, \\ B'_1=\bigl \{&H[1,2,3,4,6,7,12,5,f_1],\, [2,3,4,5,7,8,13,6,f_1],\, [3,4,5,6,8,9,0,7,f_1], \\ & [4,5,6,7,9,10,1,8,f_1],\, [5,6,7,8,10,11,2,9,f_1],\, [6,7,8,9,11,12,3,10,f_1], \\ & [7,8,9,10,12,13,4,11,f_1],\, [8,9,10,11,13,0,5,12,f_2],\, [9,10,11,12,0,1,6,13,f_2], \\ & [10,11,12,13,1,2,7,0,f_2],\, [11,12,13,0,2,3,8,1,f_2],\, [12,13,0,1,3,4,9,2,f_2], \\ & [13,0,1,2,4,5,10,3,f_2],\, [0,1,2,3,5,6,11,4,f_2]\bigr \}, \\ B_2= \bigl \{& [f_1,0,1,2,4,5,8,9,10,12],\, [f_2,0,1,2,4,5,8,9,10,13],\, [f_1,4,10,5,9,6,11,13,7,8], \\ & [f_2,4,10,5,9,6,11,1,7,8],\, [0,1,9,2,8,3,7,4,10,13],\, [0,1,5,2,6,3,9,4,8,12], \\ & [0,1,7,2,9,10,12,4,8,13],\, [0,1,11,2,7,3,10,6,8,9],\, [0,1,10,2,11,4,6,7,f_1,f_2]\bigr \},\\ B'_2=\bigl \{& [0,f_1,7,1,2,3,6,8,10,13],\, [1,f_1,8,2,3,4,7,9,11,0],\, [2,f_1,9,3,4,5,8,10,12,1], \\ & [3,f_1,10,4,5,6,9,11,13,2],\, [4,f_1,11,5,6,7,10,12,0,3],\, [5,f_1,12,6,7,8,11,13,1,4], \\ & [6,f_1,13,7,8,9,12,0,2,5],\, [7,f_2,0,8,9,10,13,1,3,6],\, [8,f_2,1,9,10,11,0,2,4,7], \\ & [9,f_2,2,10,11,12,1,3,5,8],\, [10,f_2,3,11,12,13,2,4,6,9],\, [11,f_2,4,12,13,0,3,5,7,10], \\ & [12,f_2,5,13,0,1,4,6,8,11],\, [13,f_2,6,0,1,2,5,7,9,12] \bigr \},\\ B_3= \bigl \{&[3,9,0,10,1,5,8,f_2,6,12],\, [f_1,13,1,0,6,7,11,2,3,5],\, [10,13,f_1,1,f_2,4,6,3,8,12], \\ & [1,12,9,2,0,4,8,f_2,3,6],\, [13,2,1,0,8,5,9,3,f_1,7],\, [10,2,0,f_1,1,5,f_2,4,7,9], \\ & [0,5,f_1,7,1,4,8,11,12,f_2],\, [9,5,3,0,8,7,2,11,12,4],\, [2,f_2,11,6,4,0,1,5,7,13]\bigr \}, \\ B_3'= \bigl \{&[7,f_1,0,1,2,4,6,3,5,8],\, [8,f_1,1,2,3,5,7,4,6,9],\, [9,f_1,2,3,4,6,8,5,7,10], \\ & [10,f_1,3,4,5,7,9,6,8,11],\, [11,f_1,4,5,6,8,10,7,9,12],\, [12,f_1,5,6,7,9,11,8,10,13], \\ & [13,f_1,6,7,8,10,12,9,11,0],\, [0,f_2,7,8,9,11,13,10,12,1],\, [1,f_2,8,9,10,12,0,11,13,2], \\ & [2,f_2,9,10,11,13,1,12,0,3],\, [3,f_2,10,11,12,0,2,13,1,4],\, [4,f_2,11,12,13,1,3,0,2,5], \\ & [5,f_2,12,13,0,2,4,1,3,6],\, [6,f_2,13,0,1,3,5,2,4,7]\bigr \},\\ B_4=\bigl \{&[0,1,2,3,5,6,7,10,f_1,13],\, [0,1,5,6,f_2,7,8,13,2,9],\, [0,1,7,9,11,13,2,4,f_2,6], \\ & [0,1,8,f_1,12,2,4,7,f_2,13],\, [0,f_1,f_2,1,6,2,3,12,4,10],\, [0,1,11,12,f_1,2,4,8,10,3], \\ & [0,3,6,8,f_1,2,9,12,f_2,1],\, [0,1,12,f_1,3,2,4,9,f_2,13],\, [0,2,10,13,4,7,12,3,f_1,9]\bigr \},\\ B'_4= \bigl \{&[7,f_1,0,1,9,6,10,2,5,11],\, [8,f_1,1,2,10,7,11,3,6,12],\, [9,f_1,2,3,11,8,12,4,7,13], \\ & [10,f_1,3,4,12,9,13,5,8,0],\, [11,f_1,4,5,13,10,0,6,9,1],\, [12,f_1,5,6,0,11,1,7,10,2], \\ & [13,f_1,6,7,1,12,2,8,11,3],\, [0,f_2,7,8,2,13,3,9,12,4],\, [1,f_2,8,9,3,0,4,10,13,5], \\ & [2,f_2,9,10,4,1,5,11,0,6],\, [3,f_2,10,11,5,2,6,12,1,7],\, [4,f_2,11,12,6,3,7,13,2,8], \\ & [5,f_2,12,13,7,4,8,0,3,9],\, [6,f_2,13,0,8,5,9,1,4,10]\bigr \}, \\ B_{5}= \bigl \{& [1,5,13,4,9,0,f_1,f_2,2,3,6],\, [0,f_2,6,f_1,12,13,8,7,1,5,9], \\ & [0,f_2,5,f_1,10,6,8,9,1,4,11],\, [0,f_2,4,f_1,8,2,5,7,9,11,13], \\ & [0,f_2,3,f_1,6,4,17,13,8,11,12],\, [0,f_2,2,f_1,4,5,8,13,6,10,11], \\ & [0,f_2,1,f_1,2,3,6,10,5,7,12],\, [0,3,6,7,13,2,4,10,9,11,5], \\ & [5,0,1,2,9,3,4,12,6,11,13]\bigr \},\\ B'_{5}= \bigl \{& [2,1,0,f_1,7,3,4,6,8,10,13],\, [3,2,1,f_1,8,4,5,7,9,11,0], \\ & [4,3,2,f_1,9,5,6,8,10,12,1],\, [5,4,3,f_1,10,6,7,9,11,13,2], \\ & [6,5,4,f_1,11,7,8,10,12,0,3],\, [7,6,5,f_1,12,8,9,11,13,1,4], \\ & [8,7,6,f_1,13,9,10,12,0,2,5],\, [9,8,7,f_2,0,10,11,13,1,3,6], \\ & [10,9,8,f_2,1,11,12,0,2,4,7],\, [11,10,9,f_2,2,12,13,1,3,5,8], \\ & [12,11,10,f_2,3,13,0,2,4,6,9],\, [13,12,11,f_2,4,0,1,3,5,7,10], \\ & [0,13,12,f_2,5,1,2,4,6,8,11],\, [1,0,13,f_2,6,2,3,5,7,9,12] \bigr \}. \end{aligned}$$

Then for \(k\in [1,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{16}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in \{1,2\}\), and \(j \mapsto j+1 \pmod {14}\) on the vertices along with the \(H_k\)-blocks in \(B'_k\).

Example 9

Let \(V \Big (K^{(3)}_{17}\Bigr ) = \mathbb {Z}_{17}\) and let

$$\begin{aligned} B_2= \bigl \{&[0,3,13,4,12,5,11,7,8,9],\, [0,3,11,4,8,5,10,6,7,9],\, [0,1,11,2,4,3,10,5,7,15], \\ & [0,2,13,3,12,4,10,5,6,9],\, [0,1,12,2,11,3,9,5,6,10],\, [0,1,7,2,5,3,6,8,11,16], \\ & [0,1,9,2,8,4,11,5,7,14],\, [0,1,6,2,12,4,9,8,10,14],\, [0,14,16,4,5,1,10,6,9,11], \\ & [0,1,8,2,7,3,4,9,12,16]\bigr \},\\ B_3 = \bigl \{&[1,2,0,3,6,7,10,8,11,16],\, [1,8,0,2,7,5,3,4,6,14],\, [2,5,0,1,6,7,9,3,4,8], \\ & [4,8,0,9,3,5,14,1,6,12],\, [0,12,2,13,6,7,16,8,11,15],\, [0,1,15,3,4,8,13,2,5,12], \\ & [0,4,10,15,5,7,11,8,12,3],\, [0,1,14,15,4,2,11,3,6,16],\, [0,3,12,1,4,2,15,8,10,5], \\ & [0,1,13,14,7,9,15,3,4,12]\bigr \}, \\ B_4=\bigl \{&[0,1,2,3,5,6,7,10,11,15], \, [0,1,6,7,13,16,3,12,15,5],\, [0,1,8,10,5,2,4,11,15,6], \\ & [0,1,9,11,4,13,3,8,12,2],\, [0,1,10,12,14,9,2,5,8,11],\, [0,1,11,14,6,2,7,13,15,3], \\ & [0,1,12,16,5,14,3,6,8,2],\, [0,1,13,15,2,16,3,6,8,14],\, [0,1,14,2,11,8,3,5,7,15], \\ & [0,1,15,2,7,3,6,12,4,10]\bigr \},\\ B_5=\bigl \{&[1,2,0,3,16,4,6,12,7,10,13],\, [1,3,0,4,16,5,7,14,6,9,13], \\ & [1,9,0,5,16,6,8,13,7,10,15],\, [1,11,0,6,16,2,4,12,3,7,10], \\ & [1,10,0,7,16,2,4,13,5,11,14],\, [1,12,0,4,5,7,9,13,3,11,14], \\ & [1,14,0,2,4,3,8,10,5,9,13],\, [1,15,0,2,13,3,8,16,4,9,14], \\ & [2,5,0,3,10,4,8,14,1,6,12],\, [2,14,0,4,11,1,5,13,3,6,15] \bigr \}. \end{aligned}$$

Then for \(k\in [2,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{17}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(j \mapsto j+1 \pmod {17}\) on the vertices.

Example 10

Let \(V \Big (K^{(3)}_{18}\Bigr ) = \mathbb {Z}_{17} \cup \{f_1\}\) and let

$$\begin{aligned} B_5=\bigl \{&[0,1,f_1,2,4,6,8,14,7,10,13],\, [0,6,f_1,2,7,3,5,12,8,11,15], \\ & [1,9,0,5,16,6,8,13,7,10,15],\, [1,11,0,6,16,2,4,12,3,7,10], \\ & [1,10,0,7,16,2,4,13,5,11,14],\, [1,12,0,4,5,7,9,13,3,11,14], \\ & [1,14,0,2,4,3,8,10,5,9,13],\, [1,15,0,2,13,3,8,16,4,9,14], \\ & [2,5,0,3,10,4,8,14,1,6,12],\, [2,14,0,4,11,1,5,13,3,6,15], \\ & [0,3,f_1,1,5,6,7,10,12,13,14],\, [0,8,f_1,6,16,9,10,14,12,13,15] \bigr \}. \end{aligned}$$

Then an \(H_5\)-decomposition of \(K^{(3)}_{18}\) consists of the orbits of the \(H_5\)-blocks in \(B_5\) under the action of the map \(f_1 \mapsto f_1\) and \(j \mapsto j+1 \pmod {17}\) on the vertices.

Example 11

Let \(V \Big (K^{(3)}_{2,\overline{8},\overline{8}}\cup L_{\overline{8},\overline{8}}\Bigr ) = \{f_1,f_2\} \cup \mathbb {Z}_{16}\) with the vertex partition \(\bigl \{ \{f_1,f_2\},\) \(\{0,2,\ldots ,14\},\) \(\{1,3,\ldots ,15\} \bigr \}\). Now, let

$$\begin{aligned} B_3 {=} \bigl \{& [1,3,0,5,10,15,12,7,11,4],\, [1,5,0,4,11,13,14,6,12,15],\, [3,6,0,4,9,12,13,5,10,11], \\ & [2,7,6,11,3,0,12,1,8,10],\, [0,3,11,5,12,9,14,6,7,10],\, [0,3,9,1,8,10,15,4,5,12], \\ & [4,f_1,11,12,f_2,5,10,0,1,2], [14,15,f_1,10,5,f_2,12,0,1,6], [f_1,9,6,f_2,3,1,12,4,5,11]\bigr \},\\ B_5{=}\bigl \{&[1,3,0,5,10,6,9,13,2,4,7],\, [1,5,0,4,11,7,9,10,6,12,15], \\ & [3,6,0,4,9,7,10,11,8,13,14],\, [0,12,3,6,11,1,2,13,5,7,14], \\ & [0,3,11,1,2,10,13,15,4,5,8],\, [0,3,9,1,8,5,13,14,4,6,11], \\ & [4,5,f_1,10,15,0,9,14,6,7,f_2],\, [0,3,f_1,8,15,f_2,7,12,4,5,11], \\ & [4,11,f_2,10,13,0,1,2,6,7,12] \bigr \}. \end{aligned}$$

Then for \(k\in \{3,5\}\) an \(H_k\)-decomposition of \(K^{(3)}_{2,\overline{8},\overline{8}} \cup L^{(3)}_{\overline{8},\overline{8}}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in \{1,2\}\), and \(j \mapsto j+1 \pmod {16}\) on the vertices.

Example 12

Let \(V \Big (K^{(3)}_{2,8,8}\Bigr ) = \{f_1,f_2\} \cup \mathbb {Z}_{16}\) with vertex partition \(\bigl \{ \{f_1,f_2\},\) \(\{0,2,\ldots ,14\},\) \(\{1,3,\ldots ,15\} \bigr \}\). Now, let

$$\begin{aligned} B_1 = \bigl \{&[0,1,f_1,2,5,3,8,15,f_2],\, [0,1,f_2,2,5,3,8,15,f_1]\bigr \}, \\ B_2= \bigl \{& [f_1,0,1,2,5,4,9,f_2,6,13],\, [f_2,0,1,2,5,4,9,f_1,6,13]\bigr \}, \\ B_4=\bigl \{&[0,1,f_1,2,5,4,9,f_2,6,13],\, [0,1,f_2,2,5,4,9,f_1,6,13]\bigr \}. \end{aligned}$$

Then for \(k\in \{1,2,4\}\) an \(H_k\)-decomposition of \(K^{(3)}_{2,8,8}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in \{1,2\}\), and \(j \mapsto j+1 \pmod {16}\) on the vertices.

Example 13

Let \(V \Big (K^{(3)}_{4,8,8}\Bigr ) = \{f_1,f_2,f_3,f_4\} \cup \mathbb {Z}_{16}\) with the vertex partition \(\bigl \{ \{f_1,f_2,f_3,f_4\},\) \(\{0,2,\ldots ,14\},\) \(\{1,3,\ldots ,15\} \bigr \}\). Now, let

$$\begin{aligned} B_3 = \bigl \{& [0,f_1,4,f_2,1,f_3,2,3,f_4,5],\, [0,f_2,4,f_3,1,f_4,2,3,f_1,5], \\ & [0,f_3,4,f_4,1,f_1,2,3,f_2,5],\, [0,f_4,4,f_1,1,f_2,2,3,f_3,5] \bigr \}, \\ B_5=\bigl \{& [0,f_1,4,f_2,1,2,f_3,3,5,f_4,7],\, [0,f_2,4,f_3,1,2,f_4,3,5,f_1,7], \\ & [0,f_3,4,f_4,1,2,f_1,3,5,f_2,7],\, [0,f_4,4,f_1,1,2,f_2,3,5,f_3,7] \bigr \}. \end{aligned}$$

Then for \(k\in \{3,5\}\) an \(H_k\)-decomposition of \(K^{(3)}_{4,8,8}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in [1,4]\), and \(j \mapsto j+1 \pmod {16}\) on the vertices.

Example 14

Let \(V \Big (K^{(3)}_{6,8,8}\Bigr ) = \{f_1,f_2,f_3,f_4,f_5,f_6\} \cup \mathbb {Z}_{16}\) with vertex partition \(\bigl \{ \{f_1,f_2,\ldots ,f_6\},\) \(\{0,2,\ldots ,14\},\) \(\{1,3,\ldots ,15\} \bigr \}\). Now, let

$$\begin{aligned} B_3 = \bigl \{& [0,f_1,4,f_2,1,f_3,2,3,f_4,5],\, [0,f_2,4,f_3,1,f_4,2,3,f_5,5],\, [0,f_3,4,f_4,1,f_5,2,3,f_6,5], \\ & [0,f_4,4,f_5,1,f_6,2,3,f_1,5],\, [0,f_5,4,f_6,1,f_1,2,3,f_2,5],\, [0,f_6,4,f_1,1,f_2,2,3,f_3,5] \bigr \}, \\ B_5=\bigl \{& [0,f_1,4,f_2,1,2,f_3,3,5,f_4,7],\, [0,f_2,4,f_3,1,2,f_4,3,5,f_5,7], \\ & [0,f_3,4,f_4,1,2,f_5,3,5,f_6,7],\, [0,f_4,4,f_5,1,2,f_6,3,5,f_1,7], \\ & [0,f_5,4,f_6,1,2,f_1,3,5,f_2,7],\, [0,f_6,4,f_1,1,2,f_2,3,5,f_3,7] \bigr \}. \end{aligned}$$

Then for \(k\in \{3,5\}\) an \(H_k\)-decomposition of \(K^{(3)}_{6,8,8}\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in [1,6]\), and \(j \mapsto j+1 \pmod {16}\) on the vertices.

Example 15

Let \(V \Big (K^{(3)}_{14}\setminus K^{(3)}_6\Bigr ) = \mathbb {Z}_{8} \cup \{f_1,f_2,f_3,f_4,f_5,f_6\}\) with \( \{f_1,f_2,f_3,f_4,f_5,f_6\}\) as the set of vertices in the hole. Now, let

$$\begin{aligned} B_1 = \bigl \{& [7,5,0,1,4,2,f_1,3,6], [1,6,f_2,3,5,f_3,4,f_5,f_6], [1,4,f_3,0,2,5,f_4,f_2,6], \\ & [0,1,f_5,2,4,3,f_1,f_2,5], [0,1,f_6,2,4,3,f_1,f_3,5], [0,3,f_5,f_3,1,f_2,4,5,f_4], \\ & [0,3,f_6,f_3,1,f_2,2,f_1,f_4], [3,6,0,2,4,f_6,f_4,f_5,1]\bigr \},\\ B_{1}'= \bigl \{&[0,1,f_3,2,3,4,5,f_2,6],\, [0,1,f_2,2,3,4,5,f_1,6], \, [0,1,f_1,2,3,4,5,f_3,6],\\ & [1,2,f_3,3,4,6,7,f_2,0], \, [1,2,f_2,3,4,6,7,f_1,0],\, [1,2,f_1,3,4,6,7,f_3,0], \\ & [6,2,5,1,f_2,7,4,0,f_1],\, [7,3,6,2,f_2,0,5,1,f_1], [0,4,7,3,f_2,1,6,2,f_1],\\ & [1,5,0,4,f_2,2,7,3,f_1], \, [2,6,1,5,f_4,3,0,4,f_3],\, [3,7,2,6,f_4,4,1,5,f_3], \\ & [4,0,3,7,f_4,5,2,6,f_3],\, [5,1,4,0,f_4,6,3,7,f_3], \, [6,5,4,0,f_5,2,f_4,0,3],\\ & [7,6,5,1,f_5,3,f_4,1,4], \, [0,7,6,2,f_5,4,f_4,2,5],\, [1,0,7,3,f_5,5,f_4,3,6], \\ & [2,1,0,4,f_6,6,f_4,4,7],\, [3,2,1,5,f_6,7,f_4,5,0], \, [4,3,2,6,f_6,0,f_4,6,1],\\ & [5,4,3,7,f_6,1,f_4,7,2]\bigr \},\\ B_2 = \bigl \{& [f_5,0,1,2,4,3,6,7,f_6,f_1],\, [f_6,6,7,3,5,1,4,2,f_5,f_2], \, [f_3,2,4,3,6,1,f_4,f_2,5,0],\\ & [f_4,0,1,2,4,3,6,f_3,f_5,5], \, [f_2,0,2,4,f_4,7,f_3,3,5,6],\, [f_1,0,3,1,f_4,2,f_5,4,5,6], \\ & [2,4,6,f_6,f_2,f_1,0,7,f_5,f_4],\, [f_6,f_5,3,f_4,4,f_3,6,2,f_2,f_1]\bigr \},\\ B_{2}'= \bigl \{&[7,f_4,3,1,6,2,5,0,4,f_3],\, [0,f_4,4,2,7,3,6,1,5,f_3], \, [1,f_4,5,3,0,4,7,2,6,f_3],\\ & [2,f_4,6,4,1,5,0,3,7,f_3], \, [3,f_2,7,5,2,6,1,4,0,f_1],\, [4,f_2,0,6,3,7,2,5,1,f_1], \\ & [5,f_2,1,7,4,0,3,6,2,f_1],\, [6,f_2,2,0,5,1,4,7,3,f_1], \, [4,5,1,7,3,f_5,0,f_1,6,f_3], \\ & [5,6,2,0,4,f_5,1,f_1,7,f_3],\, [6,7,3,1,5,f_5,2,f_1,0,f_3],\, [7,0,4,2,6,f_5,3,f_1,1,f_3], \\ & [0,1,5,3,7,f_6,4,f_1,2,f_3],\, [1,2,6,4,0,f_6,5,f_1,3,f_3], \, [2,3,7,5,1,f_6,6,f_1,4,f_3], \\ & [3,4,0,6,2,f_6,7,f_1,5,f_3],\, [f_1,0,1,2,3,4,5,f_2,6,7],\, [f_2,0,1,2,3,4,5,f_3,6,7], \\ & [f_3,0,1,2,3,4,5,f_1,6,7],\, [f_1,1,2,3,4,5,6,f_2,0,7], \, [f_2,1,2,3,4,5,6,f_3,0,7], \\ & [f_3,1,2,3,4,5,6,f_1,0,7]\bigr \},\\ B_3 = \bigl \{&[0,2,f_1,1,4,7,f_2,3,5,f_3],\, [0,2,f_4,1,4,7,f_3,3,5,f_2],\, [3,5,7,f_4,f_3,2,f_2,0,1,4], \\ & [0,1,f_5,4,2,5,f_6,f_1,f_4,7],\, [0,1,f_6,4,2,5,f_5,f_2,f_1,7],\, [f_1,2,f_6,f_2,3,f_3,f_5,0,1,6], \\ & [0,f_5,f_4,5,6,f_3,f_6,2,4,7],\, [f_1,2,f_5,f_2,4,f_4,f_6,0,1,3\bigr \}, \end{aligned}$$
$$\begin{aligned} B_3' = \bigl \{& [0,1,f_1,2,3,4,f_2,5,6,f_3],\, [1,2,f_1,3,4,5,f_2,6,7,f_3],\, [0,1,f_2,2,3,4,f_3,5,6,f_1], \\ & [1,2,f_3,0,7,6,f_2,4,5,f_1],\, [2,3,f_3,1,0,7,f_1,5,6,f_2],\, [1,2,f_2,0,7,6,f_1,4,5,f_3], \\ & [2,3,7,6,5,1,f_3,0,4,f_2],\, [3,4,0,7,6,2,f_3,1,5,f_2],\, [4,5,1,0,7,3,f_3,2,6,f_2], \\ & [5,6,2,1,0,4,f_3,3,7,f_2],\, [6,7,3,2,1,5,f_4,4,0,f_1],\, [7,0,4,3,2,6,f_4,5,1,f_1], \\ & [0,1,5,4,3,7,f_4,6,2,f_1],\, [1,2,6,5,4,0,f_4,7,3,f_1],\, [0,4,f_5,f_6,5,f_1,f_3,f_2,f_4,1], \\ & [1,5,f_5,f_6,6,f_1,f_3,f_2,f_4,2],\, [2,6,f_5,f_6,7,f_1,f_3,f_2,f_4,3], \\ & [3,7,f_5,f_6,0,f_1,f_3,f_2,f_4,4],\, [0,4,f_6,f_5,1,f_1,f_3,f_2,f_4,5], \\ & [1,5,f_6,f_5,2,f_1,f_3,f_2,f_4,6],\, [2,6,f_6,f_5,3 ,f_1,f_3,f_2,f_4,7], \\ & [3,7,f_6,f_5,4,f_1,f_3,f_2,f_4,0]\bigr \},\\ B_4= \bigl \{&[0,f_3,f_1,1,3,7,f_2,f_4,4,6], \, [3,0,1,2,5,6,f_3,4,7,f_2],\, [0,1,f_5,2,4,6,7,f_6,3,5], \\ & [f_1,0,f_5,f_4,1,f_6,f_3,2,4,f_2],\, [f_1,0,f_6,f_4,2,f_2,f_5,1,3,4], \\ & [0,f_4,f_3,f_2,1,2,f_5,f_6,3,6],\, [0,f_4,3,f_2,f_6,7,f_3,f_5,1,4]\bigr \},\\ B'_4=\bigl \{&[0,1,f_1,2,3,4,5,f_2,6,7],\, [0,1,f_2,2,3,4,5,f_3,6,7],\, [0,1,f_3,2,3,4,5,f_1,6,7], \\ & [1,2,f_1,3,4,5,6,f_2,0,7],\, [1,2,f_2,3,4,5,6,f_3,0,7],\, [1,2,f_3,3,4,5,6,f_1,0,7], \\ & [f_1,0,4,5,6,f_3,7,2,f_4,1],\, [f_1,1,5,6,7,f_3,0,3,f_4,2],\, [f_1,2,6,7,0,f_3,1,4,f_4,3], \\ & [f_1,3,7,0,1,f_3,2,5,f_4,4],\, [f_2,4,0,1,2,f_3,3,6,f_4,5],\, [f_2,5,1,2,3,f_3,4,7,f_4,6], \\ & [f_2,6,2,3,4,f_3,5,0,f_4,7],\, [f_2,7,3,4,5,f_3,6,1,f_4,0],\, [f_3,0,4,7,2,f_1,f_2,1,3,5], \\ & [f_3,1,5,0,3,f_1,f_2,2,4,6],\, [f_3,2,6,1,4,f_1,f_2,3,5,7],\, [f_3,3,7,2,5,f_1,f_2,4,6,0], \\ & [f_4,4,0,3,6,f_1,f_2,5,7,1],\, [f_4,5,1,4,7,f_1,f_2,6,0,2],\, [f_4,6,2,5,0,f_1,f_2,7,1,3], \\ & [f_4,7,3,6,1,f_1,f_2,0,2,4],\, [f_5,4,0,1,5,7,f_4,f_1,3,6],\, [f_5,5,1,2,6,0,f_4,f_1,4,7], \\ & [f_5,6,2,3,7,1,f_4,f_1,5,0],\, [f_5,7,3,4,0,2,f_4,f_1,6,1],\, [f_6,0,4,5,1,3,f_4,f_1,7,2], \\ & [f_6,1,5,6,2,4,f_4,f_1,0,3],\, [f_6,2,6,7,3,5,f_4,f_1,1,4],\, [f_6,3,7,0,4,6,f_4,f_1,2,5]\bigr \},\\ B_{5} = \bigl \{&[6,f_4,f_6,f_5,7,1,3,f_3,0,2,5],\, [5,f_3,f_4,f_5,7,f_2,3,6,0,2,4], \\ & [f_5,1,f_3,5,f_6,3,4,6,f_1,0,2],\, [f_5,2,f_2,f_6,5,3,6,f_4,0,1,4], \\ & [f_3,1,f_2,f_4,4,2,5,6,f_1,0,3],\, [f_5,6,f_1,f_6,7,f_4,4,5,f_3,0,3], \\ & [3,f_2,f_1,f_4,5,2,4,f_6,f_5,0,1],\, [0,2,f_5,3,6,f_4,5,7,f_6,1,4]\bigr \},\\ B'_{5} = \bigl \{&[0,1,f_1,2,3,f_2,4,5,f_3,6,7],\, [0,1,f_2,2,3,f_3,4,5,f_1,6,7],\, [0,1,f_3,2,3,f_1,4,5,f_2,6,7], \\ & [1,2,f_1,3,4,f_2,5,6,f_3,7,0],\, [1,2,f_2,3,4,f_3,5,6,f_1,7,0],\, [1,2,f_3,3,4,f_1,5,6,f_2,7,0], \\ & [1,2,0,f_1,4,f_2,3,7,f_6,5,6],\, [2,3,1,f_1,5,f_2,4,0,f_6,6,7],\, [3,4,2,f_1,6,f_2,5,1,f_6,7,0], \\ & [4,5,3,f_1,7,f_2,6,2,f_6,0,1],\, [5,6,4,f_3,0,f_4,7,3,f_6,1,2],\, [6,7,5,f_3,1,f_4,0,4,f_6,2,3], \\ & [7,0,6,f_3,2,f_4,1,5,f_6,3,4],\, [0,1,7,f_3,3,f_4,2,6,f_6,4,5], \\ & [1,3,4,0,f_5,f_2,5,7,f_1,f_3,2],\, [2,4,5,1,f_5,f_2,6,0,f_1,f_3,3], \\ & [3,5,6,2,f_5,f_2,7,1,f_1,f_3,4],\, [4,6,7,3,f_5,f_2,0,2,f_1,f_3,5], \\ & [5,7,0,4,f_6,f_2,1,3,f_1,f_3,6],\, [6,0,1,5,f_6,f_2,2,4,f_1,f_3,7], \\ & [7,1,2,6,f_6,f_2,3,5,f_1,f_3,0],\, [0,2,3,7,f_6,f_2,4,6,f_1,f_3,1]\bigr \}. \end{aligned}$$

Then for \(k\in [1,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{14}\setminus K^{(3)}_6\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in [1,6]\), and \(j \mapsto j+1 \pmod {8}\) on the vertices along with the \(H_k\)-blocks in \(B'_k\).

Example 16

Let \(V \Big (K^{(3)}_{16}\setminus K^{(3)}_8\Bigr ) = \mathbb {Z}_{8} \cup \{f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8\}\) with the set \(\{f_1, \dots , f_8\}\) as the set of vertices in the hole. Now, let

$$\begin{aligned} B_1 = \bigl \{& [7,5,0,1,4,2,f_1,3,6],\, [0,6,f_2,2,5,f_3,4,f_5,f_6],\, [1,4,f_3,0,2,5,f_4,f_2,6], \\ & [0,1,f_5,2,4,3,f_1,f_2,5],\, [0,1,f_6,2,4,3,f_1,f_3,5],\, [0,3,f_5,f_3,1,f_2,4,5,f_4], \\ & [5,6,f_7,1,3,f_1,0,2,4],\, [0,1,f_8,2,4,3,f_1,f_4,5],\, [f_3,0,f_8,f_2,1,2,f_4,f_6,3], \\ & [0,3,f_7,f_3,1,2,f_2,f_6,4],\, [0,3,f_8,f_5,1,2,f_6,4,7], \, [f_5,0,f_7,f_4,1,2,f_6,f_3,3]\bigr \},\\ B_1'= \bigl \{&[0,1,f_3,2,3,4,5,f_2,6],\, [0,1,f_2,2,3,4,5,f_1,6],\, [0,1,f_1,2,3,4,5,f_3,6], \\ & [1,2,f_3,3,4,6,7,f_2,0],\, [1,2,f_2,3,4,6,7,f_1,0],\, [1,2,f_1,3,4,6,7,f_3,0], \\ & [6,2,5,1,f_2,7,4,0,f_1],\, [7,3,6,2,f_2,0,5,1,f_1],\, [0,4,7,3,f_2,1,6,2,f_1], \\ & [1,5,0,4,f_2,2,7,3,f_1],\, [2,6,1,5,f_4,3,0,4,f_3],\, [3,7,2,6,f_4,4,1,5,f_3], \\ & [4,0,3,7,f_4,5,2,6,f_3],\, [5,1,4,0,f_4,6,3,7,f_3],\, [6,5,4,0,f_5,2,f_4,0,3], \\ & [7,6,5,1,f_5,3,f_4,1,4],\, [0,7,6,2,f_5,4,f_4,2,5],\, [1,0,7,3,f_5,5,f_4,3,6], \\ & [2,1,0,4,f_6,6,f_4,4,7],\, [3,2,1,5,f_6,7,f_4,5,0],\, [4,3,2,6,f_6,0,f_4,6,1], \\ & [5,4,3,7,f_6,1,f_4,7,2],\, [1,7,4,f_5,f_4,0,f_7,f_8,2],\, [2,0,5,f_5,f_4,1,f_7,f_8,3], \\ & [3,1,6,f_5,f_4,2,f_7,f_8,4],\, [4,2,7,f_5,f_4,3,f_7,f_8,5],\, [5,3,0,f_5,f_4,4,f_8,f_7,6], \\ & [6,4,1,f_5,f_4,5,f_8,f_7,7],\, [7,5,2,f_5,f_4,6,f_8,f_7,0],\, [0,6,3,f_5,f_4,7,f_8,f_7,1]\bigr \},\\ B_2 = \bigl \{& [f_8,f_3,2,f_2,1,f_1,0,3,5,f_5],\, [f_6,0,1,2,4,3,6,5,f_5,f_1],\, [f_7,f_4,2,f_3,1,f_2,0,3,4,f_5], \\ & [f_7,0,1,2,4,3,6,5,f_6,f_1],\, [f_8,f_7,0,f_6,1,f_4,2,3,f_5,f_3],\, [f_6,f_5,0,f_4,1,f_3,2,f_1,7,f_7], \\ & [f_5,f_4,2,0,3,4,f_8,5,f_7,f_6],\, [f_8,0,1,2,4,3,6,5,f_2,f_6],\, [f_1,0,f_4,1,4,3,5,6,f_5,f_2], \\ & [0,1,2,4,6,f_7,f_5,5,f_3,f_1],\, [f_2,0,2,4,f_4,7,f_3,3,5,6],\, [f_4,0,1,2,4,3,6,f_1,f_2,5], \\ & [f_3,2,4,3,6,1,f_4,f_2,5,0]\bigr \}, \\ B_2' = \bigl \{ & [7,f_4,3,1,6,2,5,0,4,f_3],\, [0,f_4,4,2,7,3,6,1,5,f_3],\, [1,f_4,5,3,0,4,7,2,6,f_3], \\ & [2,f_4,6,4,1,5,0,3,7,f_3],\, [3,f_2,7,5,2,6,1,4,0,f_1],\, [4,f_2,0,6,3,7,2,5,1,f_1], \\ & [5,f_2,1,7,4,0,3,6,2,f_1],\, [6,f_2,2,0,5,1,4,7,3,f_1],\, [0,1,5,4,f_5,3,7,2,6,f_6], \\ & [1,2,6,5,f_5,4,0,3,7,f_6],\, [2,3,7,6,f_5,5,1,4,0,f_6],\, [3,4,0,7,f_5,6,2,5,1,f_6], \\ & [4,5,1,0,f_7,7,3,6,2,f_8],\, [5,6,2,1,f_7,0,4,7,3,f_8],\, [6,7,3,2,f_7,1,5,0,4,f_8], \\ & [7,0,4,3,f_7,2,6,1,5,f_8],\, [f_1,0,1,2,3,4,5,f_2,6,7],\, [f_2,0,1,2,3,4,5,f_3,6,7], \\ & [f_3,0,1,2,3,4,5,f_1,6,7],\, [f_1,1,2,3,4,5,6,f_2,0,7],\, [f_2,1,2,3,4,5,6,f_3,0,7], \\ & [f_3,1,2,3,4,5,6,f_1,0,7]\bigr \}, \\ B_3 = \bigl \{&[0,2,f_1,1,4,7,f_2,3,5,f_3],\, [0,2,f_4,1,4,7,f_3,3,5,f_2],\, [3,5,7,f_4,f_3,2,f_2,0,1,4], \\ & [0,1,f_5,4,2,5,f_6,f_1,f_4,7],\, [0,1,f_6,4,2,5,f_5,f_2,f_1,7],\, [0,f_5,f_4,5,6,f_3,f_6,2,4,7], \\ & [f_8,2,f_1,4,f_7,5,6,0,1,3],\, [f_7,0,f_2,1,f_8,2,3,f_4,f_6,4],\, [f_8,0,f_3,1,f_7,2,4,f_2,f_5,3], \\ & [f_7,1,f_4,3,f_8,2,4,0,5,7],\, [f_8,0,f_5,1,f_7,2,5,f_1,f_6,3],\, [f_7,0,f_6,1,f_8,2,5,f_3,f_5,3]\bigr \},\\ \end{aligned}$$
$$\begin{aligned} B_3' = \bigl \{&[0,1,f_1,2,3,4,f_2,5,6,f_3],\, [1,2,f_1,3,4,5,f_2,6,7,f_3],\, [0,1,f_2,2,3,4,f_3,5,6,f_1], \\ & [1,2,f_3,0,7,6,f_2,4,5,f_1],\, [2,3,f_3,1,0,7,f_1,5,6,f_2],\, [1,2,f_2,0,7,6,f_1,4,5,f_3], \\ & [2,3,7,6,5,1,f_3,0,4,f_2],\, [3,4,0,7,6,2,f_3,1,5,f_2],\, [4,5,1,0,7,3,f_3,2,6,f_2], \\ & [5,6,2,1,0,4,f_3,3,7,f_2],\, [6,7,3,2,1,5,f_4,4,0,f_1],\, [7,0,4,3,2,6,f_4,5,1,f_1], \\ & [0,1,5,4,3,7,f_4,6,2,f_1],\, [1,2,6,5,4,0,f_4,7,3,f_1],\, [0,4,f_5,f_6,5,f_1,f_3,f_2,f_4,1], \\ & [1,5,f_5,f_6,6,f_1,f_3,f_2,f_4,2],\, [2,6,f_5,f_6,7,f_1,f_3,f_2,f_4,3], \\ & [3,7,f_5,f_6,0,f_1,f_3,f_2,f_4,4],\, [0,4,f_6,f_5,1,f_1,f_3,f_2,f_4,5], \\ & [1,5,f_6,f_5,2,f_1,f_3,f_2,f_4,6],\, [2,6,f_6,f_5,3,f_1,f_3,f_2,f_4,7], \\ & [3,7,f_6,f_5,4,f_1,f_3,f_2,f_4,0],\, [0,4,f_7,f_8,1,f_1,f_5,f_2,f_6,2], \\ & [1,5,f_7,f_8,2,f_1,f_5,f_2,f_6,3],\, [2,6,f_7,f_8,3,f_1,f_5,f_2,f_6,4], \\ & [3,7,f_7,f_8,4,f_1,f_5,f_2,f_6,5],\, [0,4,f_8,f_7,5,f_1,f_5,f_2,f_6,6], \\ & [1,5,f_8,f_7,6,f_1,f_5,f_2,f_6,7],\, [2,6,f_8,f_7,7,f_1,f_5,f_2,f_6,0], \\ & [3,7,f_8,f_7,0,f_1,f_5,f_2,f_6,1]\bigr \},\\ B_4 = \bigl \{&[0,f_3,f_1,1,3,7,f_2,f_4,4,6],\, [f_1,0,f_6,f_4,2,f_2,f_5,1,3,4],\, [0,f_4,f_7,1,f_1,2,f_2,f_8,3,6], \\ & [0,f_3,f_8,1,f_5,2,f_2,f_7,3,f_6],\, [0,f_6,f_8,1,f_1,2,f_3,f_7,3,f_5],\, [0,1,f_7,2,4,6,7,f_8,3,5], \\ & [0,f_7,f_8,1,f_4,2,f_2,f_3,3,f_6],\, [0,3,f_5,1,2,4,7,f_6,5,6],\, [0,2,f_2,4,7,3,f_3,f_5,1,f_1], \\ & [0,f_4,f_5,1,f_6,2,f_7,5,7,4],\, [4,0,1,3,f_3,f_4,2,5,f_2,f_6]\bigr \},\\ B'_4=\bigl \{&[0,1,f_1,2,3,4,5,f_2,6,7],\, [0,1,f_2,2,3,4,5,f_3,6,7],\, [0,1,f_3,2,3,4,5,f_1,6,7], \\ & [1,2,f_1,3,4,5,6,f_2,0,7],\, [1,2,f_2,3,4,5,6,f_3,0,7],\, [1,2,f_3,3,4,5,6,f_1,0,7], \\ & [f_1,0,4,5,6,f_3,7,2,f_4,1],\, [f_1,1,5,6,7,f_3,0,3,f_4,2],\, [f_1,2,6,7,0,f_3,1,4,f_4,3], \\ & [f_1,3,7,0,1,f_3,2,5,f_4,4],\, [f_2,4,0,1,2,f_3,3,6,f_4,5],\, [f_2,5,1,2,3,f_3,4,7,f_4,6], \\ & [f_2,6,2,3,4,f_3,5,0,f_4,7],\, [f_2,7,3,4,5,f_3,6,1,f_4,0],\, [f_3,0,4,7,2,f_1,f_2,1,3,5], \\ & [f_3,1,5,0,3,f_1,f_2,2,4,6],\, [f_3,2,6,1,4,f_1,f_2,3,5,7],\, [f_3,3,7,2,5,f_1,f_2,4,6,0], \\ & [f_4,4,0,3,6,f_1,f_2,5,7,1],\, [f_4,5,1,4,7,f_1,f_2,6,0,2],\, [f_4,6,2,5,0,f_1,f_2,7,1,3], \\ & [f_4,7,3,6,1,f_1,f_2,0,2,4],\, [f_5,4,0,1,5,7,f_4,f_1,3,6],\, [f_5,5,1,2,6,0,f_4,f_1,4,7], \\ & [f_5,6,2,3,7,1,f_4,f_1,5,0],\, [f_5,7,3,4,0,2,f_4,f_1,6,1],\, [f_6,0,4,5,1,3,f_4,f_1,7,2], \\ & [f_6,1,5,6,2,4,f_4,f_1,0,3],\, [f_6,2,6,7,3,5,f_4,f_1,1,4],\, [f_6,3,7,0,4,6,f_4,f_1,2,5],\\ & [f_7,4,0,2,f_6,f_3,f_4,5,7,f_5],\, [f_7,5,1,3,f_6,f_3,f_4,6,0,f_5],\, [f_7,6,2,4,f_6,f_3,f_4,7,1,f_5], \\ & [f_7,7,3,5,f_6,f_3,f_4,0,2,f_5],\, [f_8,0,4,6,f_6,f_3,f_4,1,3,f_5],\, [f_8,1,5,7,f_6,f_3,f_4,2,4,f_5],\\ & [f_8,2,6,0,f_6,f_3,f_4,3,5,f_5],\, [f_8,3,7,1,f_6,f_3,f_4,4,6,f_5]\bigr \}, \\ B_{5} = \bigl \{&[0,4,1,2,6,f_2,f_3,3,5,7,f_4],\, [6,f_6,f_8,7,f_7,3,f_3,f_4,0,f_1,f_2], \\ & [7,f_6,f_7,3,6,2,5,f_2,4,f_5,f_8],\, [4,f_7,f_5,3,f_6,0,2,f_2,1,6,f_3], \\ & [1,f_7,f_4,2,f_8,0,3,5,4,6,7],\, [0,f_5,f_4,1,f_6,2,4,6,3,5,f_8], \\ & [7,f_8,f_3,6,f_7,2,f_1,f_5,0,3,f_6],\, [4,f_5,f_3,6,f_6,0,3,f_1,1,2,f_4], \\ & [5,f_8,f_2,3,f_7,2,4,f_6,0,1,f_5],\, [0,f_5,f_2,f_6,4,2,5,f_4,1,3,f_3], \\ & [0,f_3,f_1,f_4,4,6,7,f_7,1,3,f_5],\, [f_1,f_6,1,f_2,f_4,4,7,f_8,3,5,f_7], \\ & [0,f_8,f_1,1,f_7,6,7,f_6,2,5,f_5]\bigr \},\\ B'_{5}= \bigl \{& [0,1,f_1,2,3,f_2,4,5,f_3,6,7],\, [0,1,f_2,2,3,f_3,4,5,f_1,6,7],\, [0,1,f_3,2,3,f_1,4,5,f_2,6,7], \\ & [1,2,f_1,3,4,f_2,5,6,f_3,7,0],\, [1,2,f_2,3,4,f_3,5,6,f_1,7,0],\, [1,2,f_3,3,4,f_1,5,6,f_2,7,0], \\ & [5,6,7,3,f_2,1,2,f_8,0,4,f_1],\, [6,7,0,4,f_2,2,3,f_8,1,5,f_1],\, [7,0,1,5,f_2,3,4,f_8,2,6,f_1], \\ & [0,1,2,6,f_2,4,5,f_8,3,7,f_1],\, [1,2,3,7,f_3,5,6,f_8,0,4,f_4],\, [2,3,4,0,f_3,6,7,f_8,1,5,f_4], \\ & [3,4,5,1,f_3,7,0,f_8,2,6,f_4],\, [4,5,6,2,f_3,0,1,f_8,3,7,f_4],\, [1,3,0,4,f_5,5,7,f_1,2,6,f_6], \\ & [2,4,1,5,f_5,6,0,f_1,3,7,f_6],\, [3,5,2,6,f_5,7,1,f_1,4,0,f_6],\, [4,6,3,7,f_5,0,2,f_1,5,1,f_6], \\ & [5,7,4,0,f_7,1,3,f_1,6,2,f_8],\, [6,0,5,1,f_7,2,4,f_1,7,3,f_8],\, [7,1,6,2,f_7,3,5,f_1,0,4,f_8], \\ & [0,2,7,3,f_7,4,6,f_1,1,5,f_8]\bigr \} . \end{aligned}$$

Then for \(k\in [1,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{16}\setminus K^{(3)}_8\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in [1,8]\), and \(j \mapsto j+1 \pmod {8}\) on the vertices along with the \(H_k\)-blocks in \(B'_k\).

Example 17

Let \(V \Big (K^{(3)}_{17}\setminus K^{(3)}_9\Bigr ) = \mathbb {Z}_{8} \cup \{f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8,f_9\}\) with \(\{f_1, \dots , f_9\}\) as the set of vertices in the hole. Now, let

$$\begin{aligned} B_2=\bigl \{&[f_8,f_3,2,f_2,1,f_1,0,3,5,f_5],\, [f_6,0,1,2,4,3,6,5,f_5,f_1],\, [f_7,f_4,2,f_3,1,f_2,0,3,4,f_5], \\ & [f_7,0,1,2,4,3,6,5,f_6,f_1],\, [f_8,f_7,0,f_6,1,f_4,2,3,f_5,f_3],\, [f_6,f_5,0,f_4,1,f_3,2,f_1,7,f_7], \\ & [f_8,0,1,2,4,3,6,5,f_2,f_6],\, [f_5,f_4,2,0,3,4,f_8,5,f_7,f_6],\, [0,1,2,4,6,f_7,f_5,5,f_3,f_1], \\ & [f_9,f_4,0,f_3,1,f_1,2,3,6,f_2],\, [f_2,0,f_5,1,f_4,2,f_9,3,5,6],\, [f_4,0,1,2,4,3,6,7,f_9,f_5], \\ & [f_1,0,3,1,f_4,2,f_2,4,7,f_3],\, [f_9,0,1,2,4,3,6,f_2,f_3,5],\, [f_9,f_8,7,f_7,6,f_6,5,1,f_4,f_3]\bigr \},\\ B'_2 = \bigl \{& [f_1,0,1,2,3,4,5,f_2,6,7],\, [f_2,0,1,2,3,4,5,f_3,6,7],\, [f_3,0,1,2,3,4,5,f_1,6,7], \\ & [f_1,1,2,3,4,5,6,f_2,0,7],\, [f_2,1,2,3,4,5,6,f_3,0,7],\, [f_3,1,2,3,4,5,6,f_1,0,7], \\ & [f_1,0,4,1,3,2,6,5,7,f_2],\, [f_1,0,6,2,4,3,5,1,7,f_2],\, [f_1,0,2,1,5,3,7,4,6,f_3], \\ & [f_2,0,2,1,3,4,6,5,7,f_1],\, [f_3,0,2,1,3,5,7,f_1,4,6],\, [f_2,0,6,2,4,3,5,1,7,f_3], \\ & [f_3,0,6,2,4,3,5,1,7,f_1],\, [7,f_2,3,1,6,2,5,0,4,f_3],\, [0,f_2,4,2,7,3,6,1,5,f_3], \\ & [1,f_2,5,3,0,4,7,2,6,f_3],\, [2,f_2,6,4,1,5,0,3,7,f_3],\, [3,f_4,7,5,2,6,1,4,0,f_5], \\ & [4,f_4,0,6,3,7,2,5,1,f_5],\, [5,f_4,1,7,4,0,3,6,2,f_5],\, [6,f_4,2,0,5,1,4,7,3,f_5], \\ & [0,1,5,4,f_6,3,7,2,6,f_7],\, [1,2,6,5,f_6,4,0,3,7,f_7],\, [2,3,7,6,f_6,5,1,4,0,f_7], \\ & [3,4,0,7,f_6,6,2,5,1,f_7],\, [4,5,1,0,f_8,7,3,6,2,f_9],\, [5,6,2,1,f_8,0,4,7,3,f_9], \\ & [6,7,3,2,f_8,1,5,0,4,f_9],\, [7,0,4,3,f_8,2,6,1,5,f_9]\bigr \}, \\ B_3 = \bigl \{&[0,2,f_1,1,4,7,f_2,3,5,f_3],\, [0,2,f_4,1,4,7,f_3,3,5,f_2],\, [3,5,7,f_4,f_3,2,f_2,0,1,4], \\ & [0,1,f_5,4,2,5,f_6,f_1,f_4,7],\, [0,1,f_6,4,2,5,f_5,f_2,f_1,7],\, [f_1,2,f_5,f_2,4,f_4,f_6,0,1,3], \\ & [f_1,2,f_6,f_2,3,f_3,f_5,0,1,6],\, [0,f_5,f_4,5,6,f_3,f_6,2,4,7],\, [0,1,f_7,2,4,7,f_8,f_1,f_9,6], \\ & [0,1,f_8,2,4,7,f_9,f_1,f_7,6],\, [0,1,f_9,2,4,7,f_7,f_1,f_8,6],\, [0,f_7,f_2,1,f_8,f_3,2,f_4,f_9,3], \\ & [f_2,0,f_9,1,f_3,f_7,2,f_4,f_8,3],\, [f_9,0,f_5,1,f_8,f_6,2,f_4,f_7,3], \\ & [0,f_8,f_7,1,f_9,f_6,2,f_3,3,4],\, [f_6,0,f_7,f_5,1,f_8,f_9,f_2,2,3]\bigr \},\\ B_3' = \bigl \{& [f_8,1,5,6,f_1,2,3,f_9,0,4],\, [f_7,3,7,0,f_1,4,5,f_9,2,6],\, [f_7,5,1,0,f_1,3,4,f_8,2,6], \\ & [f_1,6,7,3,f_9,1,5,f_8,0,4],\, [f_1,1,2,6,f_7,0,4,f_8,3,7],\, [2,3,7,6,5,1,f_3,0,4,f_2], \\ & [3,4,0,7,6,2,f_3,1,5,f_2],\, [4,5,1,0,7,3,f_3,2,6,f_2],\, [5,6,2,1,0,4,f_3,3,7,f_2], \\ & [6,7,3,2,1,5,f_4,4,0,f_1],\, [7,0,4,3,2,6,f_4,5,1,f_1],\, [0,1,5,4,3,7,f_4,6,2,f_1], \\ & [1,2,6,5,4,0,f_4,7,3,f_1],\, [0,4,f_5,f_6,5,f_1,f_3,f_2,f_4,1],\, [1,5,f_5,f_6,6,f_1,f_3,f_2,f_4,2], \\ & [2,6,f_5,f_6,7,f_1,f_3,f_2,f_4,3],\, [3,7,f_5,f_6,0,f_1,f_3,f_2,f_4,4], \\ & [0,4,f_6,f_5,1,f_1,f_3,f_2,f_4,5],\, [1,5,f_6,f_5,2,f_1,f_3,f_2,f_4,6], \\ & [2,6,f_6,f_5,3,f_1,f_3,f_2,f_4,7],\, [3,7,f_6,f_5,4,f_1,f_3,f_2,f_4,0]\bigr \},\\ \end{aligned}$$
$$\begin{aligned} B_4 = \bigl \{&[0,f_3,f_1,1,3,7,f_2,f_4,4,6],\, [f_1,0,f_6,f_4,2,f_2,f_5,1,3,4],\, [0,f_3,f_8,1,f_5,2,f_2,f_7,3,f_6], \\ & [0,f_6,f_8,1,f_1,2,f_3,f_7,3,f_5],\, [0,3,f_5,1,2,4,7,f_6,5,6],\, [0,1,f_7,2,4,6,7,f_8,3,5], \\ & [0,f_4,f_7,1,f_1,2,f_2,f_8,3,6]{,}\; [0,f_8,f_9,1,f_7,2,f_4,f_5,3,f_3]{,}\; [0,f_6,f_9,1,f_5,2,f_2,f_3,3,4], \\ & [0,f_4,f_9,1,3,5,f_8,f_7,4,7],\, [0,f_1,f_9,1,f_3,2,5,f_2,3,f_6],\, [0,f_5,f_6,1,f_3,5,f_9,2,4,f_2], \\ & [0,f_2,f_9,1,2,3,4,6,f_1,f_5],\, [4,0,1,3,f_3,2,5,f_4,6,f_8]\bigr \},\\ B'_4=\bigl \{&[0,7,f_1,3,4,f_2,1,2,6,f_9],\, [f_1,2,3,7,f_9,0,1,f_2,5,6],\, [1,2,f_1,6,7,f_9,0,4,5,f_2], \\ & [6,f_1,5,1,f_9,3,4,f_2,0,7],\, [0,1,f_1,4,5,2,3,f_2,6,7],\, [f_1,0,4,5,6,f_3,7,2,f_4,1], \\ & [f_1,1,5,6,7,f_3,0,3,f_4,2],\, [f_1,2,6,7,0,f_3,1,4,f_4,3],\, [f_1,3,7,0,1,f_3,2,5,f_4,4], \\ & [f_2,4,0,1,2,f_3,3,6,f_4,5],\, [f_2,5,1,2,3,f_3,4,7,f_4,6],\, [f_2,6,2,3,4,f_3,5,0,f_4,7], \\ & [f_2,7,3,4,5,f_3,6,1,f_4,0],\, [f_3,0,4,7,2,f_1,f_2,1,3,5],\, [f_3,1,5,0,3,f_1,f_2,2,4,6], \\ & [f_3,2,6,1,4,f_1,f_2,3,5,7],\, [f_3,3,7,2,5,f_1,f_2,4,6,0],\, [f_4,4,0,3,6,f_1,f_2,5,7,1], \\ & [f_4,5,1,4,7,f_1,f_2,6,0,2],\, [f_4,6,2,5,0,f_1,f_2,7,1,3],\, [f_4,7,3,6,1,f_1,f_2,0,2,4], \\ & [f_5,4,0,1,5,7,f_4,f_1,3,6],\, [f_5,5,1,2,6,0,f_4,f_1,4,7],\, [f_5,6,2,3,7,1,f_4,f_1,5,0], \\ & [f_5,7,3,4,0,2,f_4,f_1,6,1],\, [f_6,0,4,5,1,3,f_4,f_1,7,2],\, [f_6,1,5,6,2,4,f_4,f_1,0,3], \\ & [f_6,2,6,7,3,5,f_4,f_1,1,4],\, [f_6,3,7,0,4,6,f_4,f_1,2,5],\, [f_7,4,0,2,f_6,f_3,f_4,5,7,f_5], \\ & [f_7,5,1,3,f_6,f_3,f_4,6,0,f_5],\, [f_7,6,2,4,f_6,f_3,f_4,7,1,f_5],\, [f_7,7,3,5,f_6,f_3,f_4,0,2,f_5], \\ & [f_8,0,4,6,f_6,f_3,f_4,1,3,f_5],\, [f_8,1,5,7,f_6,f_3,f_4,2,4,f_5],\, [f_8,2,6,0,f_6,f_3,f_4,3,5,f_5], \\ & [f_8,3,7,1,f_6,f_3,f_4,4,6,f_5]\bigr \},\\ B_{5} = \bigl \{&[0,1,f_7,2,4,f_8,3,6,f_1,f_9,7],\, [0,1,f_8,2,4,f_9,3,6,f_1,f_7,7], \\ & [0,1,f_9,2,4,f_7,3,6,f_1,f_8,7],\, [0,f_7,f_9,f_8,1,f_3,2,3,f_2,4,5], \\ & [f_6,0,f_8,f_7,1,f_2,f_9,2,f_4,3,4],\, [f_2,0,f_7,f_3,1,f_5,f_8,2,f_6,f_9,3], \\ & [f_2,0,f_8,f_3,1,f_4,f_7,2,f_5,f_9,3],\, [f_5,0,f_7,f_6,1,f_4,f_8,2,f_3,f_9,3], \\ & [6,f_4,f_6,f_5,7,1,3,f_3,0,2,5],\, [5,f_3,f_4,f_5,7,f_2,3,6,0,2,4], \\ & [f_5,1,f_3,5,f_6,3,4,6,f_1,0,2],\, [f_5,2,f_2,f_6,5,3,6,f_4,0,1,4], \\ & [f_3,1,f_2,f_4,4,2,5,6,f_1,0,3],\, [f_5,6,f_1,f_6,7,f_4,f_9,5,f_3,0,3], \\ & [3,f_3,f_1,f_4,5,2,4,f_6,f_5,0,1],\, [0,2,f_5,3,6,f_4,5,7,f_6,1,4]\bigr \},\\ B'_{5}= \bigl \{& [1,2,f_1,5,6,f_8,0,4,f_9,3,7],\, [3,4,f_1,7,0,f_8,1,5,f_9,2,6],\, [2,3,f_1,6,7,f_7,1,5,f_9,0,4], \\ & [0,1,f_1,4,5,f_7,3,7,f_8,2,6],\, [0,4,f_7,2,6,f_9,1,5,f_8,3,7],\, [1,2,0,f_1,4,f_2,3,7,f_6,5,6], \\ & [2,3,1,f_1,5,f_2,4,0,f_6,6,7],\, [3,4,2,f_1,6,f_2,5,1,f_6,7,0],\, [4,5,3,f_1,7,f_2,6,2,f_6,0,1], \\ & [5,6,4,f_3,0,f_4,7,3,f_6,1,2],\, [6,7,5,f_3,1,f_4,0,4,f_6,2,3],\, [7,0,6,f_3,2,f_4,1,5,f_6,3,4], \\ & [0,1,7,f_3,3,f_4,2,6,f_6,4,5],\, [2,f_1,f_2,1,7,3,5,6,f_5,0,4],\, [3,f_1,f_2,2,0,4,6,7,f_5,1,5], \\ & [4,f_1,f_2,3,1,5,7,0,f_5,2,6],\, [5,f_1,f_2,4,2,6,0,1,f_5,3,7],\, [6,f_1,f_2,5,3,7,1,2,f_6,0,4], \\ & [7,f_1,f_2,6,4,0,2,3,f_6,1,5]{,}\, [0,f_1,f_2,7,5,1,3,4,f_6,2,6]{,}\, [1,f_1,f_2,0,6,2,4,5,f_6,3,7] \bigr \}. \end{aligned}$$

Then for \(k\in [2,5]\) an \(H_k\)-decomposition of \(K^{(3)}_{17}\setminus K^{(3)}_9\) consists of the orbits of the \(H_k\)-blocks in \(B_k\) under the action of the map \(f_i \mapsto f_i\), for \(i \in [1,9]\), and \(j \mapsto j+1 \pmod {8}\) on the vertices along with the \(H_k\)-blocks in \(B'_k\).

Example 18

Let \(V \Big (K^{(3)}_{18}\setminus K^{(3)}_{10}\Bigr ) = \mathbb {Z}_{8} \cup \{f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8,f_9,f_{10}\}\) with \(\{f_1, \dots , f_{10}\}\) as the set of vertices in the hole. Now, let

$$\begin{aligned} B_{5} = \bigl \{&[6,f_9,f_8,7,f_{10},0,f_1,f_3,1,2,4],\, [4,f_9,f_7,5,f_{10},0,f_1,f_4,1,3,6], \\ & [2,f_6,f_7,f_8,3,4,6,f_1,0,1,5],\, [4,f_9,f_6,6,f_{10},0,2,f_3,3,5,f_2], \\ & [2,f_5,f_6,f_8,3,0,1,f_4,f_{10},4,7],\, [2,f_9,f_5,f_{10},3,0,1,f_6,4,7,f_7], \\ & [2,f_7,f_5,f_8,3,1,f_2,f_3,4,7,f_9],\, [3,f_9,f_4,f_{10},4,f_1,f_5,2,1,f_2,f_6], \\ & [3,f_7,f_4,f_8,6,2,4,f_9,5,7,f_{10}],\, [2,f_3,f_6,4,f_4,f_1,f_{10},1,f_5,0,3], \\ & [f_9,2,f_3,f_{10},4,f_1,0,3,f_2,f_8,1],\, [f_7,2,f_3,f_8,3,f_2,f_5,4,f_1,f_9,1], \\ & [f_4,1,f_3,f_5,2,f_2,f_{10},3,f_9,6,7],\, [1,f_4,f_2,f_7,5,f_1,f_8,3,f_6,2,4], \\ & [f_2,f_9,5,6,f_8,f_4,2,7,f_{10},3,4],\, [1,f_6,f_1,4,f_7,f_8,3,5,f_5,0,2], \\ & [1,3,f_7,5,6,4,7,f_8,f_4,0,2],\, [f_2,2,5,6,f_5,f_3,0,3,f_6,4,7] \bigr \},\\ B'_{5} = \bigl \{& [0,1,f_1,2,3,f_2,4,5,f_3,6,7],\, [0,1,f_2,2,3,f_3,4,5,f_1,6,7], \\ & [0,1,f_3,2,3,f_1,4,5,f_2,6,7],\, [1,2,f_1,3,4,f_2,5,6,f_3,7,0], \\ & [1,2,f_2,3,4,f_3,5,6,f_1,7,0],\, [1,2,f_3,3,4,f_1,5,6,f_2,7,0], \\ & [1,2,0,4,f_1,f_2,3,7,6,f_9,f_{10}],\, [2,3,1,5,f_1,f_2,4,0,7,f_9,f_{10}], \\ & [3,4,2,6,f_1,f_2,5,1,0,f_9,f_{10}],\, [4,5,3,7,f_1,f_2,6,2,1,f_9,f_{10}], \\ & [5,6,4,0,f_3,f_4,7,3,2,f_9,f_{10}],\, [6,7,5,1,f_3,f_4,0,4,3,f_9,f_{10}], \\ & [7,0,6,2,f_3,f_4,1,5,4,f_9,f_{10}],\, [0,1,7,3,f_3,f_4,2,6,5,f_9,f_{10}], \\ & [1,3,4,0,f_5,2,6,f_6,f_1,f_2,7],\, [2,4,5,1,f_5,3,7,f_6,f_1,f_2,0], \\ & [3,5,6,2,f_5,4,0,f_6,f_1,f_2,1],\, [4,6,7,3,f_5,5,1,f_6,f_1,f_2,2], \\ & [5,7,0,4,f_7,6,2,f_8,f_1,f_2,3],\, [6,0,1,5,f_7,7,3,f_8,f_1,f_2,4], \\ & [7,1,2,6,f_7,0,4,f_8,f_1,f_2,5],\, [0,2,3,7,f_7,1,5,f_8,f_1,f_2,6], \\ & [f_9,0,4,f_4,f_5,1,3,5,2,6,7],\, [f_9,1,5,f_4,f_5,2,4,6,3,7,0], \\ & [f_9,2,6,f_4,f_5,3,5,7,4,0,1],\, [f_9,3,7,f_4,f_5,4,6,0,5,1,2], \\ & [f_{10},4,0,f_4,f_5,5,7,1,6,2,3],\, [f_{10},5,1,f_4,f_5,6,0,2,7,3,4], \\ & [f_{10},6,2,f_4,f_5,7,1,3,0,4,5],\, [f_{10},7,3,f_4,f_5,0,2,4,1,5,6]\bigr \}. \end{aligned}$$

Then an \(H_5\)-decomposition of \(K^{(3)}_{18}\setminus K^{(3)}_{10}\) consists of the orbits of the \(H_5\)-blocks in \(B_5\) under the action of the map \(f_i \mapsto f_i\), for \(i \in [1,10]\), and \(j \mapsto j+1 \pmod {8}\) on the vertices along with the \(H_5\)-blocks in \(B'_5\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bunge, R.C., Dawson, E., Donovan, M., Hatzer, C., Maass, J. (2024). On Decompositions of Complete 3-Uniform Hypergraphs into a Linear Forest with 4 Edges. In: Hoffman, F., Holliday, S., Rosen, Z., Shahrokhi, F., Wierman, J. (eds) Combinatorics, Graph Theory and Computing. SEICCGTC 2021. Springer Proceedings in Mathematics & Statistics, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-031-52969-6_29

Download citation

Publish with us

Policies and ethics

Navigation