Die Rolle des EEG als Neuro-Marker für Patienten mit Depression: Ein systematischer Überblick

  • Chapter
  • First Online:
Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML

Zusammenfassung

Depressive Symptome können Gefühle der Melancholie, Interessenlosigkeit und Schwierigkeiten beim Erinnern und Konzentrieren umfassen. Die bestehenden Techniken zur Erkennung von Depressionen erfordern viel Interaktion mit Menschen, und die Ergebnisse sind stark abhängig vom Wissen und der Fähigkeit des Arztes, der sie durchführt. Die Elektroenzephalographie (EEG) ist ein potenzielles Werkzeug, das interessante Informationen liefert, die bei der Diagnose und Bewertung von Gehirnanomalien des Menschen mit ausgezeichneter Zeitauflösung verwendet werden können; jedoch stellt die Erkennung von Depressionen eine Herausforderung für Ingenieure und Wissenschaftler dar, um die personalisierte Gesundheitsversorgung zu unterstützen. Allerdings könnte das EEG einen Hinweis auf kognitiven Rückgang in Richtung Depressionsklassifikation liefern. Um einen neurophysiologischen Diagnoseindex für therapeutische Anwendungen zu erstellen, der empfindlich auf die Schwere der Depression reagiert, könnte es möglich sein, das EEG mit anderen biologischen, kognitiven Markern und Bildgebungsverfahren zu kombinieren. Das Ziel der aktuellen Studie ist es, die Grundaktivität des EEG bei depressiven Personen zu betonen, beginnend mit der Sammlung von EEG-Signalen und fortgesetzt durch EEG-Daten-Vorverarbeitungsschritte für die Signalverstärkung, lineare und nicht-lineare Eigenschaften. Der anschließende Fokus wird auf der Extraktion von EEG-Signalen liegen, um die großen Schwankungen der EEG-Signale zu berücksichtigen, gefolgt von Klassifizierungsansätzen zur Unterscheidung der Schwere der Depression. Daher hat die vorliegende Übersicht die Rolle der EEG-Signalverarbeitung und -analyse bei der Unterstützung von Ärzten und Klinikern bei der Bestimmung geeigneter Planungen und optimaler, effektiverer Behandlungsprogramme untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. W. Depression, Other common mental disorders: global health estimates. Geneva: World Health Organization. CC BYNC-SA 3 (2022)

    Google Scholar 

  2. W. Liu, K. Jia, Z. Wang, Z. Ma, A Depression prediction algorithm based on spatiotemporal feature of EEG signal. Brain Sci. 12, 630 (2022)

    Article  Google Scholar 

  3. S.P. Pandalai, P.A. Schulte, D.B. Miller, Conceptual heuristic models of the interrelationships between obesity and the occupational environment. Scandinavian J. Work Environ. Health 39, 221 (2013)

    Article  Google Scholar 

  4. Y.T. Nigatu, S.A. Reijneveld, B.W. Penninx, R.A. Schoevers, U. Bültmann, The longitudinal joint effect of obesity and major depression on work performance impairment. Am. J. Public Health 105, e80–e86 (2015)

    Article  Google Scholar 

  5. S.I. Prada, H.G. Rincón-Hoyos, A.M. Pérez, M. Sierra-Ruiz, V. Serna, The Effect of Depression on Paid Sick Leave due to Metabolic and Cardiovascular Disease in low-wage workers.(Depression and Sick Leave). Gerencia y Políticas de Salud 21 (2022)

    Google Scholar 

  6. W.N. Burton, C.-Y. Chen, A.B. Schultz, D.W. Edington, The prevalence of metabolic syndrome in an employed population and the impact on health and productivity. J. Occup. Environ. Med. 50, 1139–1148 (2008)

    Article  Google Scholar 

  7. N.K. Al-Qazzaz, M.K. Sabir, S.H.B.M. Ali, S.A. Ahmad, K. Grammer, Electroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkers. Sensors 20, 59 (2020)

    Article  Google Scholar 

  8. N.K. Al-Qazzaz, S.H.M. Ali, S.A. Ahmad, Entropy-based EEG markers for gender identification of vascular dementia patients, in Inter. Conf. Innovat. Biomed. Eng. Life Sci., (2019), S. 121–128

    Google Scholar 

  9. N.K. Al-Qazzaz, S.H.B. Ali, S.A. Ahmad, K. Chellappan, M. Islam, J. Escudero, Role of EEG as biomarker in the early detection and classification of dementia. Scientif. World J. 2014 (2014)

    Google Scholar 

  10. N.K. Al-Qazzaz, S.H. Ali, S.A. Ahmad, S. Islam, K. Mohamad, Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment. Neuropsychiatr. Dis. Treat. 10, 1677 (2014)

    Article  Google Scholar 

  11. N.K. Al-Qazzaz, S.H.B.M. Ali, S.A. Ahmad, M.S. Islam, J. Escudero, Discrimination of stroke- related mild cognitive impairment and vascular dementia using EEG signal analysis. Med. Biol. Eng. Comput. 56, 1–21 (2017)

    Google Scholar 

  12. N.K. Al-Qazzaz, S. Ali, M.S. Islam, S.A. Ahmad, J. Escudero, EEG markers for early detection and characterization of vascular dementia during working memory tasks, in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), (2016), S. 347–351

    Google Scholar 

  13. N.K. Al-Qazzaz, M.K. Sabir, A.H. Al-Timemy, K. Grammer, An integrated entropy-spatial framework for automatic gender recognition enhancement of emotion-based EEGs. Med. Biol. Eng. Comput. 60, 1–20 (2022)

    Article  Google Scholar 

  14. N.K. Al-Qazzaz, M.K. Sabir, S.H.B.M. Ali, S.A. Ahmad, K. Grammer, Complexity and entropy analysis to improve gender identification from emotional-based EEGs. J. Healthcare Eng. 2021 (2021)

    Google Scholar 

  15. N.K. Al-Qazzaz, M.K. Sabir, S.H.B.M. Ali, S.A. Ahmad, K. Grammer, Multichannel optimization with hybrid spectral-entropy markers for gender identification enhancement of emotional- based EEGs. IEEE Access 9, 107059–107078 (2021)

    Article  Google Scholar 

  16. P. Nguyen, D. Tran, X. Huang, W. Ma, Age and gender classification using EEG paralinguistic features, in 2013 6th International IEEE/EMBS conference on neural engineering (NER), (2013), S. 1295–1298

    Google Scholar 

  17. N.K. Al-Qazzaz, M.K. Sabir, K. Grammer, Gender differences identification from brain regions using spectral relative powers of emotional EEG, in IWBBIO 2019, (2019)

    Google Scholar 

  18. N.K. Al-Qazzaz, M.K. Sabir, S.H.M. Ali, S.A. Ahmad, K. Grammer, The role of spectral power ratio in characterizing emotional EEG for gender identification, in 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), (2021), S. 334–338

    Google Scholar 

  19. B. Kaur, D. Singh, P.P. Roy, Age and gender classification using brain–computer interface. Neural Comput. & Applic. 31, 5887–5900 (2019)

    Article  Google Scholar 

  20. S. Sardari, B. Nakisa, M.N. Rastgoo, P. Eklund, Audio based depression detection using convolutional autoencoder. Expert Syst. Appl. 189, 116076 (2022)

    Article  Google Scholar 

  21. R.P. Thati, A.S. Dhadwal, P. Kumar, A novel multi-modal depression detection approach based on mobile crowd sensing and task-based mechanisms. Multimed. Tools Appl., 1–34 (2022)

    Google Scholar 

  22. J.E. Siegel-Ramsay, M.A. Bertocci, B. Wu, M.L. Phillips, S.M. Strakowski, J.R. Almeida, Distinguishing between depression in bipolar disorder and unipolar depression using magnetic resonance imaging: A systematic review. Bipolar Disord. 24, 474–498 (2022)

    Article  Google Scholar 

  23. S. Yasin, S.A. Hussain, S. Aslan, I. Raza, M. Muzammel, A. Othmani, EEG based major depressive disorder and bipolar disorder detection using neural networks: A review. Comput. Methods Prog. Biomed. 202, 106007 (2021)

    Article  Google Scholar 

  24. K. Chellappan, N.K. Mohsin, S.H.B.M. Ali, M.S. Islam, Post-stroke brain memory assessment framework, in 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, (2012), S. 189–194

    Google Scholar 

  25. G. Parker, M.J. Spoelma, G. Tavella, M. Alda, D.L. Dunner, C. O’Donovan, et al., A new machine learning-derived screening measure for differentiating bipolar from unipolar mood disorders. J. Affect. Disord. 299, 513–516 (2022)

    Article  Google Scholar 

  26. C. Otte, S.M. Gold, B.W. Penninx, C.M. Pariante, A. Etkin, M. Fava, et al., Major depressive disorder. Nat. Rev. Dis. Primers. 2, 1–20 (2016)

    Article  Google Scholar 

  27. U. Halbreich, J. Borenstein, T. Pearlstein, L.S. Kahn, The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology 28, 1–23 (2003)

    Google Scholar 

  28. S. O’Connor, M. Agius, A systematic review of structural and functional MRI differences between psychotic and nonpsychotic depression. Psychiatr. Danub. 27, 235–239 (2015)

    Google Scholar 

  29. S.L. Dubovsky, B.M. Ghosh, J.C. Serotte, V. Cranwell, Psychotic depression: Diagnosis, differential diagnosis, and treatment. Psychother. Psychosom. 90, 160–177 (2021)

    Article  Google Scholar 

  30. S. Thurgood, D.M. Avery, L. Williamson, Postpartum depression (PPD). Am. J. Clin. Med. 6, 17–22 (2009)

    Google Scholar 

  31. M.W. O’Hara, Postpartum depression: What we know. J. Clin. Psychol. 65, 1258–1269 (2009)

    Article  Google Scholar 

  32. K. Machmutow, R. Meister, A. Jansen, L. Kriston, B. Watzke, M.C. Härter, et al., Comparative effectiveness of continuation and maintenance treatments for persistent depressive disorder in adults. Cochrane Database Syst. Rev. (2019)

    Google Scholar 

  33. S. Melrose, Seasonal affective disorder: An overview of assessment and treatment approaches. Depression Res. Treatment 2015 (2015)

    Google Scholar 

  34. E. Sibille, Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain- related disorders. Dialogues Clin. Neurosci. (2022)

    Google Scholar 

  35. V. Dorval, P.T. Nelson, S.S. Hébert, Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front. Molecul. Neurosci. 6 (2013)

    Google Scholar 

  36. J.A. Sonnen, K.S. Montine, J.F. Quinn, J.A. Kaye, J. Breitner, T.J. Montine, Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurol. 7, 704–714 (2008)

    Article  Google Scholar 

  37. A. Nobis, D. Zalewski, N. Waszkiewicz, Peripheral markers of depression. J. Clin. Med. 9, 3793 (2020)

    Article  Google Scholar 

  38. A.L. Lopresti, G.L. Maker, S.D. Hood, P.D. Drummond, A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog. Neuro-Psychopharmacol. Biolog. Psychiat. 48, 102–111 (2014)

    Article  Google Scholar 

  39. A. Gururajan, G. Clarke, T.G. Dinan, J.F. Cryan, Molecular biomarkers of depression. Neurosci. Biobehav. Rev. 64, 101–133 (2016)

    Article  Google Scholar 

  40. M. Guha, Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (Reference Reviews, 2014)

    Google Scholar 

  41. B. Ay, O. Yildirim, M. Talo, U.B. Baloglu, G. Aydin, S.D. Puthankattil, et al., Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43, 1–12 (2019)

    Article  Google Scholar 

  42. N. R. Council, “Depression in Parents, Parenting, and Children: Opportunities to Improve Identification, Treatment, and Prevention,” (2009)

    Google Scholar 

  43. S. Maharaj, K. Trevino, A comprehensive review of treatment options for premenstrual syndrome and premenstrual dysphoric disorder. J. Psychiat. Practice®. 21, 334–350 (2015)

    Article  Google Scholar 

  44. N.K. Al-Qazzaz, S.H.M. Ali, S.A. Ahmad, Differential evolution based channel selection algorithm on eeg signal for early detection of vascular dementia among stroke survivors, in 2018 IEEE- EMBS Conference on Biomedical Engineering and Sciences (IECBES), (2018), S. 239–244

    Google Scholar 

  45. N.K. Al-Qazzaz, S.H.M. Ali, S. Islam, S. Ahmad, J. Escudero, EEG wavelet spectral analysis during a working memory tasks in stroke-related mild cognitive impairment patients, in International Conference for Innovation in Biomedical Engineering and Life Sciences, (2015), S. 82–85

    Google Scholar 

  46. N.K. Al-Qazzaz, S. Ali, S.A. Ahmad, J. Escudero, Classification enhancement for post-stroke dementia using fuzzy neighborhood preserving analysis with QR-decomposition, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2017), S. 3174–3177

    Google Scholar 

  47. W. Mumtaz, A.S. Malik, M.A.M. Yasin, L. **a, Review on EEG and ERP predictive biomarkers for major depressive disorder. Biomed. Signal Process. Cont. 22, 85–98 (2015)

    Article  Google Scholar 

  48. J. Gallinat, R. Bottlender, G. Juckel, A. Munke-Puchner, G. Stotz, H.-J. Kuss, et al., The loudness dependency of the auditory evoked N1/P2-component as a predictor of the acute SSRI response in depression. Psychopharmacology 148, 404–411 (2000)

    Article  Google Scholar 

  49. C. Brush, A.M. Kallen, M.A. Meynadasy, T. King, G. Hajcak, J.L. Sheffler, The P300, loneliness, and depression in older adults. Biol. Psychol. 171, 108339 (2022)

    Article  Google Scholar 

  50. Y. Diao, M. Geng, Y. Fu, H. Wang, C. Liu, J. Gu, et al., A combination of P300 and eye movement data improves the accuracy of auxiliary diagnoses of depression. J. Affect. Disord. 297, 386–395 (2022)

    Article  Google Scholar 

  51. N.J. Santopetro, C. Brush, K. Burani, A. Bruchnak, G. Hajcak, Doors P300 moderates the relationship between reward positivity and current depression status in adults. J. Affect. Disord. 294, 776–785 (2021)

    Article  Google Scholar 

  52. A. Sommer, A.J. Fallgatter, C. Plewnia, Investigating mechanisms of cognitive control training: Neural signatures of PASAT performance in depressed patients. J. Neural Transm. 129, 1–11 (2021)

    Google Scholar 

  53. L. Zhou, G. Wang, C. Nan, H. Wang, Z. Liu, H. Bai, Abnormalities in P300 components in depression: An ERP-sLORETA study. Nord. J. Psychiatry 73, 1–8 (2019)

    Article  Google Scholar 

  54. C. Nan, G. Wang, H. Wang, X. Wang, Z. Liu, L. **ao, et al., The P300 component decreases in a bimodal oddball task in individuals with depression: An event-related potentials study. Clin. Neurophysiol. 129, 2525–2533 (2018)

    Article  Google Scholar 

  55. M. Shim, M.J. **, C.-H. Im, S.-H. Lee, Machine-learning-based classification between post- traumatic stress disorder and major depressive disorder using P300 features. NeuroImage: Clin. 24, 102001 (2019)

    Article  Google Scholar 

  56. N. Ramakrishnan, N. Murphy, S. Selvaraj, R.Y. Cho, Electrophysiological Biomarkers for Mood Disorders. Mood Disorders: Brain Imaging and Therapeutic Implications, 175 (2021)

    Google Scholar 

  57. A.J. Flórez, G. Molenberghs, W. Van der Elst, A.A. Abad, An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework. Computat. Statist. Data Analy. 172, 107494 (2022)

    Article  MathSciNet  Google Scholar 

  58. S. Mahato, S. Paul, Electroencephalogram (EEG) signal analysis for diagnosis of major depressive disorder (MDD): A review. Nanoelectroni. Circuit. Communicat. Syst., 323–335 (2019)

    Google Scholar 

  59. M.J. Kas, B. Penninx, B. Sommer, A. Serretti, C. Arango, H. Marston, A quantitative approach to neuropsychiatry: The why and the how. Neurosci. Biobehav. Rev. 97, 3–9 (2019)

    Article  Google Scholar 

  60. C.-T. Ip, S. Olbrich, M. Ganz, B. Ozenne, K. Köhler-Forsberg, V.H. Dam, et al., Pretreatment qEEG biomarkers for predicting pharmacological treatment outcome in major depressive disorder: Independent validation from the NeuroPharm study. Eur. Neuropsychopharmacol. 49, 101–112 (2021)

    Article  Google Scholar 

  61. F.S. de Aguiar Neto, J.L.G. Rosa, Depression biomarkers using non-invasive EEG: A review. Neurosci. Biobehav. Rev. 105, 83–93 (2019)

    Article  Google Scholar 

  62. B.D. Nelson, E.M. Kessel, D.N. Klein, S.A. Shankman, Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward. Psychophysiology 55, e12892 (2018)

    Article  Google Scholar 

  63. S. Glier, A. Campbell, R. Corr, A. Pelletier-Baldelli, A. Belger, Individual differences in frontal alpha asymmetry moderate the relationship between acute stress responsivity and state and trait anxiety in adolescents. Biolog. Psychol., 108357 (2022)

    Google Scholar 

  64. S.M. Tripathi, N. Mishra, R.K. Tripathi, K. Gurnani, P300 latency as an indicator of severity in major depressive disorder. Ind. Psychiatry J. 24, 163 (2015)

    Article  Google Scholar 

  65. N.J. Santopetro, C. Brush, A. Bruchnak, J. Klawohn, G. Hajcak, A reduced P300 prospectively predicts increased depressive severity in adults with clinical depression. Psychophysiology 58, e13767 (2021)

    Article  Google Scholar 

  66. N. Van Der Vinne, M.A. Vollebregt, M.J. Van Putten, M. Arns, Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. Neuroimage Clin. 16, 79–87 (2017)

    Article  Google Scholar 

  67. A. Dharmadhikari, A. Tandle, S. Jaiswal, V. Sawant, V. Vahia, N. Jog, Frontal theta asymmetry as a biomarker of depression. East Asian Arch. Psychiatr. 28, 17–22 (2018)

    Google Scholar 

  68. A.M. Hunter, T.X. Nghiem, I.A. Cook, D.E. Krantz, M.J. Minzenberg, A.F. Leuchter, Change in quantitative EEG theta cordance as a potential predictor of repetitive transcranial magnetic stimulation clinical outcome in major depressive disorder. Clin. EEG Neurosci. 49, 306–315 (2018)

    Article  Google Scholar 

  69. P.J. Fitzgerald, B.O. Watson, Gamma oscillations as a biomarker for major depression: An emerging topic. Transl. Psychiatry 8, 1–7 (2018)

    Article  Google Scholar 

  70. S. Sun, J. Li, H. Chen, T. Gong, X. Li, B. Hu, “A study of resting-state EEG biomarkers for depression recognition,” ar**v preprint ar**v:2002.11039 (2020)

    Google Scholar 

  71. P.C. Koo, C. Berger, G. Kronenberg, J. Bartz, P. Wybitul, O. Reis, et al., Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 269, 823–832 (2019)

    Article  Google Scholar 

  72. P. Fernández-Palleiro, T. Rivera-Baltanás, D. Rodrigues-Amorim, S. Fernández-Gil, M. del Carmen Vallejo-Curto, M. Álvarez-Ariza, et al., Brainwaves oscillations as a potential biomarker for major depression disorder risk. Clin. EEG Neurosci. 51, 3–9 (2020)

    Article  Google Scholar 

  73. W. J. G., Medical Instrumentation Application and Design. New York: Wiley (1998)

    Google Scholar 

  74. R. Lizio, F. Vecchio, G.B. Frisoni, R. Ferri, G. Rodriguez, C. Babiloni, Electroencephalographic rhythms in Alzheimer’s disease. International journal of Alzheimer’s disease, vol. 2011, 1–11 (2011)

    Article  Google Scholar 

  75. D.A. Pizzagalli, Electroencephalography and high-density electrophysiological source localization, in Handbook of Psychophysiology, (USA), S. 8–12

    Google Scholar 

  76. E. John, H. Ahn, L. Prichep, M. Trepetin, D. Brown, H. Kaye, Developmental equations for the electroencephalogram. Science 210, 1255–1258 (1980)

    Article  Google Scholar 

  77. T.R. Oakes, D.A. Pizzagalli, A.M. Hendrick, K.A. Horras, C.L. Larson, H.C. Abercrombie, et al., Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum. Brain Mapp. 21, 257–270 (Apr 2004)

    Article  Google Scholar 

  78. R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach Wiley-IEEE Press (2001)

    Google Scholar 

  79. W.O. Tatum, A.M. Husain, S.R. Benbadis, P.W. Kaplan, Handbook of EEG Interpretation (Demos Medical Publishing, LLC, USA, 2008)

    Google Scholar 

  80. U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, D.P. Subha, Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Prog. Biomed. 161, 103–113 (2018)

    Article  Google Scholar 

  81. S.D. Puthankattil, P.K. Joseph, Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy. J. Mechan. Med. Biol. 12, 1240019 (2012)

    Article  Google Scholar 

  82. O. Faust, P.C.A. Ang, S.D. Puthankattil, P.K. Joseph, Depression diagnosis support system based on EEG signal entropies. J. Mechan. Med.Biol. 14, 1450035 (2014)

    Article  Google Scholar 

  83. S.D. Kumar, D. Subha, Prediction of depression from EEG signal using long short term memory (LSTM), in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), (2019), S. 1248–1253

    Google Scholar 

  84. W. Mumtaz, A. Qayyum, A deep learning framework for automatic diagnosis of unipolar depression. Int. J. Med. Inform. 132, 103983 (2019)

    Article  Google Scholar 

  85. P. Sandheep, S. Vineeth, M. Poulose, D. Subha, Performance analysis of deep learning CNN in classification of depression EEG signals, in TENCON 2019–2019 IEEE Region 10 Conference (TENCON), (2019), S. 1339–1344

    Google Scholar 

  86. Y. Mohammadi, M. Hajian, M.H. Moradi, Discrimination of Depression Levels Using Machine Learning Methods on EEG Signals, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), (2019), S. 1765–1769

    Google Scholar 

  87. S.D. Puthankattil, P.K. Joseph, Half-wave segment feature extraction of EEG signals of patients with depression and performance evaluation of neural network classifiers. J. Mec. Med. Biol. 17, 1750006 (2017)

    Article  Google Scholar 

  88. J. Zhu, Y. Wang, R. La, J. Zhan, J. Niu, S. Zeng, et al., Multimodal mild depression recognition based on EEG-EM synchronization acquisition network. IEEE Access 7, 28196–28210 (2019)

    Article  Google Scholar 

  89. S. Mahato, S. Paul, Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 25, 1065–1076 (2019)

    Article  Google Scholar 

  90. X. Li, R. La, Y. Wang, J. Niu, S. Zeng, S. Sun, et al., EEG-based mild depression recognition using convolutional neural network. Med. Biol. Eng. Comput. 57, 1341–1352 (2019)

    Article  Google Scholar 

  91. H. Kwon, S. Kang, W. Park, J. Park, Y. Lee, Deep learning based pre-screening method for depression with imagery frontal eeg channels, in 2019 International conference on information and communication technology convergence (ICTC), (2019), S. 378–380

    Google Scholar 

  92. H. Mallikarjun, H. Suresh, Depression level prediction using EEG signal processing, in 2014 International Conference on Contemporary Computing and Informatics (IC3I), (2014), S. 928–933

    Google Scholar 

  93. H. Jebelli, M.M. Khalili, S. Lee, Mobile EEG-based workers’ stress recognition by applying deep neural network, in Advances in Informatics and Computing in Civil and Construction Engineering, (Springer, 2019), S. 173–180

    Google Scholar 

  94. B. Mohammadzadeh, M. Khodabandelu, M. Lotfizadeh, Comparing diagnosis of depression in depressed patients by EEG, based on two algorithms: Artificial nerve networks and neuro-Fuzy networks. Inter. J. Epidemiol. Res. 3, 246–258 (2016)

    Google Scholar 

  95. X. Zhang, B. Hu, L. Zhou, P. Moore, J. Chen, An EEG based pervasive depression detection for females, in Joint International Conference on Pervasive Computing and the Networked World, (2012), S. 848–861

    Google Scholar 

  96. G. Jackson-Koku, Beck depression inventory. Occup. Med. 66, 174–175 (2016)

    Article  Google Scholar 

  97. T.T. Erguzel, G.H. Sayar, N. Tarhan, Artificial intelligence approach to classify unipolar and bipolar depressive disorders. Neural Comput. & Applic. 27, 1607–1616 (2016)

    Article  Google Scholar 

  98. X. Li, X. Zhang, J. Zhu, W. Mao, S. Sun, Z. Wang, et al., Depression recognition using machine learning methods with different feature generation strategies. Artif. Intell. Med. 99, 101696 (2019)

    Article  Google Scholar 

  99. L.M. Alexander, J. Escalera, L. Ai, C. Andreotti, K. Febre, A. Mangone, et al., An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data 4, 1–26 (2017)

    Article  Google Scholar 

  100. W. Wu, Y. Zhang, J. Jiang, M.V. Lucas, G.A. Fonzo, C.E. Rolle, et al., An electroencephalographic signature predicts antidepressant response in major depression. Nat. Biotechnol. 38, 439–447 (2020)

    Article  Google Scholar 

  101. E. Garcia-Ceja, M. Riegler, P. Jakobsen, J. Tørresen, T. Nordgreen, K.J. Oedegaard, et al., Depresjon: a motor activity database of depression episodes in unipolar and bipolar patients, in Proceedings of the 9th ACM Multimedia Systems Conference, (2018), S. 472–477

    Google Scholar 

  102. H. Kristjánsdóttir, P.M. Salkovskis, B.H. Sigurdsson, E. Sigurdsson, A. Agnarsdóttir, J.F. Sigurdsson, Transdiagnostic cognitive behavioural treatment and the impact of co-morbidity: An open trial in a cohort of primary care patients. Nord. J. Psychiatry 70, 215–223 (2016)

    Article  Google Scholar 

  103. N. Langer, E.J. Ho, L.M. Alexander, H.Y. Xu, R.K. Jozanovic, S. Henin, et al., A resource for assessing information processing in the develo** brain using EEG and eye tracking. Scientific Data 4, 1–20 (2017)

    Article  Google Scholar 

  104. J. F. Cavanagh, A. W. Bismark, M. J. Frank, and J. J. Allen, “Multiple dissociations between comorbid depression and anxiety on reward and punishment processing: Evidence from computationally informed EEG,” Computational Psychiatry (Cambridge, Mass.), Bd. 3, S. 1, 2019

    Google Scholar 

  105. S.A. Taywade, R.D. Raut, A review: EEG signal analysis with different methodologies, in National Conference on Innovative Paradigms in Engineering and Technology New York, USA, (2012), S. 29–31

    Google Scholar 

  106. N.K. Al-Qazzaz, S.H.B. Ali, S.A. Ahmad, K. Chellappan, M.S. Islam, J. Escudero, Role of EEG as biomarker in the early detection and classification of dementia. The Scientific World J. 2014 (2014)

    Google Scholar 

  107. K. R. S, Handbook on Biomedical Instrumentati. New Delhi: Tata Mc Graw-Hill (1998)

    Google Scholar 

  108. A. Seal, R. Bajpai, J. Agnihotri, A. Yazidi, E. Herrera-Viedma, O. Krejcar, DeprNet: A deep convolution neural network framework for detecting depression using EEG. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Article  Google Scholar 

  109. H. Ke, D. Chen, T. Shah, X. Liu, X. Zhang, L. Zhang, et al., Cloud-aided online EEG classification system for brain healthcare: A case study of depression evaluation with a lightweight CNN. Software: Practice and Experience 50, 596–610 (2020)

    Google Scholar 

  110. C. Uyulan, T.T. Ergüzel, H. Unubol, M. Cebi, G.H. Sayar, M. Nezhad Asad, et al., Major depressive disorder classification based on different convolutional neural network models: Deep learning approach. Clin. EEG Neurosci. 52, 38–51 (2021)

    Article  Google Scholar 

  111. S. Sanei, J.A. Chambers, EEG Signal Procesing (Wiley, USA, 2007)

    Google Scholar 

  112. D.V. Moretti, C. Babiloni, G. Binetti, E. Cassetta, G. Dal Forno, F. Ferreric, et al., Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 115, 299–308 (2004)

    Article  Google Scholar 

  113. T.-P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, T.J. Sejnowski, Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111, 1745–1758 (2000)

    Article  Google Scholar 

  114. M. Habl, C. Bauer, C. Ziegaus, E. Lang, and F. Schulmeyer, “Can ICA help identify brain tumor related EEG signals,” in Proceedings of ICA, 2000, S. 609–614

    Google Scholar 

  115. C. Guerrero-Mosquera, A. M. Trigueros, A. Navia-Vazquez, EEG Signal Processing for Epilepsy (2012)

    Google Scholar 

  116. I. M. B. Núñez, “EEG Artifact Dtection,” 2010

    Google Scholar 

  117. G.N.G. Molina, Direct Brain-Computer Communication through Scalp Recorded EEG Signals (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2004)

    Google Scholar 

  118. A. Naït-Ali, Advanced Biosignal Processing (Springer, 2009)

    Google Scholar 

  119. D. Langlois, S. Chartier, D. Gosselin, An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology 6, 31–38 (2010)

    Article  Google Scholar 

  120. M. McKeown, C. Humphries, P. Achermann, A. Borbély, T. Sejnowsk, A new method for detecting state changes in the EEG: Exploratory application to sleep data. J. Sleep Res. 7, 48–56 (1998)

    Article  Google Scholar 

  121. T. Zikov, S. Bibian, G. A. Dumont, M. Huzmezan, C. Ries, “A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram,” in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference. S. 98–105. (Proceedings of the Second Joint, 2002)

    Google Scholar 

  122. V. Krishnaveni, S. Jayaraman, S. Aravind, V. Hariharasudhan, K. Ramadoss, Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Measurement Sci. Rev. 6, 45–57 (2006)

    Google Scholar 

  123. P.S. Kumar, R. Arumuganathan, K. Sivakumar, C. Vimal, Removal of ocular artifacts in the EEG through wavelet transform without using an EOG Reference Channel. Int. J. Open Problems Compt. Math 1, 188–200 (2008)

    Google Scholar 

  124. V. Krishnaveni, S. Jayaraman, L. Anitha, K. Ramadoss, Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J. Neural Eng. 3, 338–346 (2006)

    Article  Google Scholar 

  125. N.P. Castellanos, V.A. Makarov, Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods 158, 300–312 (2006)

    Article  Google Scholar 

  126. M.T. Akhtar, C.J. James, Focal artifact removal from ongoing EEG–a hybrid approach based on spatially-constrained ICA and wavelet de-noising, in Engineering in Medicine and Biology Society, (EMBC 2009. Annual International Conference of the IEEE 2009, 2009), S. 4027–4030

    Google Scholar 

  127. M.T. Akhtar, C.J. James, W. Mitsuhashi, Modifying the spatially-constrained ica for efficient removal of artifacts from eeg data, in Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, (2010), S. 1–4

    Google Scholar 

  128. J. Walters-Williams, Y. Li, A new approach to denoising EEG signals-merger of translation invariant wavelet and ICA. Int. J. Biometrics Bioinform 5, 130–149 (2011)

    Google Scholar 

  129. J. Walters-Williams, Y. Li, Performance comparison of known ICA algorithms to a wavelet-ICA merger. Signal Processing: An Inter. J. 5, 80 (2011)

    Google Scholar 

  130. N. Mammone, F.L. Foresta, F.C. Morabito, Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sensor Journal 12(3), 533–542 (2012)

    Article  Google Scholar 

  131. G. Inuso, F. La Foresta, N. Mammone, F.C. Morabito, Wavelet-ICA methodology for efficient artifact removal from Electroencephalographic recordings, in Neural Networks, (IJCNN 2007. International Joint Conference on, 2007), S. 1524–1529

    Google Scholar 

  132. N. Al-Qazzaz, S.H.B.M. Ali, S. Ahmad, M. Islam, J. Escudero, Automatic artifact removal in EEG of normal and demented individuals using ICA–WT during working memory tasks. Sensors 17, 1326 (2017)

    Article  Google Scholar 

  133. R.P. Rao, Brain-Computer Interfacing: An Introduction (Cambridge University Press, 2013)

    Google Scholar 

  134. W. Freeman, R.Q. Quiroga, Imaging Brain Function with EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals (Springer, 2012)

    Google Scholar 

  135. P.A. Abhang, B.W. Gawali, S.C. Mehrotra, Technical aspects of brain rhythms and speech parameters. Introduction to EEG-and Speech-Based Emotion Recognition, 51–79 (2016)

    Google Scholar 

  136. L. Aftanas, S. Golocheikine, Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neuroscience Letters 310, 57–60 (2001)

    Google Scholar 

  137. L.I. Aftanas, A.A. Varlamov, S.V. Pavlov, V.P. Makhnev, N.V. Reva, Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands. Int. J. Psychophysiol. 44, 67–82 (2002)

    Article  Google Scholar 

  138. M. Mohammadi, F. Al-Azab, B. Raahemi, G. Richards, N. Jaworska, D. Smith, et al., Data mining EEG signals in depression for their diagnostic value. BMC Med. Inform. Decis. Mak. 15, 1–14 (2015)

    Article  Google Scholar 

  139. H. Cai, X. Sha, X. Han, S. Wei, B. Hu, Pervasive EEG diagnosis of depression using Deep Belief Network with three-electrodes EEG collector, in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2016), S. 1239–1246

    Google Scholar 

  140. B. Hosseinifard, M.H. Moradi, R. Rostami, Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Prog. Biomed. 109, 339–345 (2013)

    Article  Google Scholar 

  141. P.F. Lee, D.P.X. Kan, P. Croarkin, C.K. Phang, D. Doruk, Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study. J. Clin. Neurosci. 47, 315–322 (2018)

    Article  Google Scholar 

  142. M.R. Dolsen, P. Cheng, J.T. Arnedt, L. Swanson, M.D. Casement, H.S. Kim, et al., Neurophysiological correlates of suicidal ideation in major depressive disorder: Hyperarousal during sleep. J. Affect. Disord. 212, 160–166 (2017)

    Article  Google Scholar 

  143. M. Liu, L. Zhou, X. Wang, Y. Jiang, Q. Liu, Deficient manipulation of working memory in remitted depressed individuals: Behavioral and electrophysiological evidence. Clin. Neurophysiol. 128, 1206–1213 (2017)

    Article  Google Scholar 

  144. J. Shen, S. Zhao, Y. Yao, Y. Wang, L. Feng, A Novel Depression Detection Method Based on Pervasive EEG and EEG Splitting Criterion, in 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2017), S. 1879–1886

    Google Scholar 

  145. J. Jeong, Nonlinear dynamics of EEG in Alzheimer’s disease. Drug Dev. Res. 56, 57–66 (2002)

    Article  Google Scholar 

  146. D.P. Subha, P.K. Joseph, R. Acharya, C.M. Lim, EEG signal analysis: A survey. J. Med. Syst. 34, 195–212 (2010)

    Article  Google Scholar 

  147. D. Abásolo, R. Hornero, C. Gómez, M. García, M. López, Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure. Med. Eng. Phys. 28, 315–322 (2006)

    Article  Google Scholar 

  148. J. Escudero, D. Abásolo, R. Hornero, P. Espino, M. López, Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 27, 1091–1106 (2006)

    Article  Google Scholar 

  149. H. Cai, J. Han, Y. Chen, X. Sha, Z. Wang, B. Hu, et al., A pervasive approach to EEG-based depression detection. Complexity 2018, 1–13 (2018)

    Google Scholar 

  150. P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9, 189–208 (1983)

    Article  MathSciNet  Google Scholar 

  151. J. Wolf, B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena 16, 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  152. R. Ferenets, T. Lip**, A. Anier, V. Jantti, S. Melto, S. Hovilehto, “comparison of entropy and complexity measures for the assessment of depth of sedation,” biomedical engineering. IEEE Transactions on 53, 1067–1077 (2006)

    Google Scholar 

  153. X.-S. Zhang, R.J. Roy, E.W. Jensen, EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 48, 1424–1433 (2001)

    Article  Google Scholar 

  154. M. Bachmann, L. Päeske, K. Kalev, K. Aarma, A. Lehtmets, P. Ööpik, et al., Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Prog. Biomed. 155, 11–17 (2018)

    Article  Google Scholar 

  155. K. Kalev, M. Bachmann, L. Orgo, J. Lass, H. Hinrikus, Lempel-Ziv and multiscale Lempel-Ziv complexity in depression, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2015), S. 4158–4161

    Google Scholar 

  156. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  157. T. Higuchi, Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena 31, 277–283 (1988)

    Article  MathSciNet  Google Scholar 

  158. P. Zhao, P. Van Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, and E. Ifeachor, “EEG markers of Alzheimer’s disease using Tsallis entropy,” in Communicated at the 3rd International Conference on Computational Intelligence in Medicine and Healthcare. S. 25–27 (CIMED, 2007)

    Google Scholar 

  159. Z. Peng, P. Van-Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, E. Ifeachor, “Characterization of EEGs in Alzheimer’s Disease using Information Theoretic Methods,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. S. 5127–5131 (2007)

    Google Scholar 

  160. P. Zhao, E. Ifeachor, “EEG assessment of Alzheimers diseases using universal compression algorithm,” in proceedings of the 3rd international conference on computational intelligence in medicine and healthcare (CIMED2007). Plymouth, UK, July 25 (2007)

    Google Scholar 

  161. G. Henderson, E. Ifeachor, N. Hudson, C. Goh, N. Outram, S. Wimalaratna, et al., “development and assessment of methods for detecting dementia using the human electroencephalogram,” biomedical engineering. IEEE Transactions on 53, 1557–1568 (2006)

    Google Scholar 

  162. M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  Google Scholar 

  163. M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)

    Article  MathSciNet  Google Scholar 

  164. S. Wold, K. Esbensen, P. Geladi, Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987)

    Article  Google Scholar 

  165. A. Subasi, M. Ismail Gursoy, EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37, 8659–8666 (2010)

    Article  Google Scholar 

  166. M. KavitaMahajan, M.S.M. Rajput, A Comparative study of ANN and SVM for EEG Classification. International Journal of Engineering 1 (2012)

    Google Scholar 

  167. F. Vialatte, A. Cichocki, G. Dreyfus, T. Musha, T. M. Rutkowski, R. Gervais, “Blind source separation and sparse bump modelling of time frequency representation of eeg signals: New tools for early detection of alzheimer’s disease,” in Machine Learning for Signal Processing, 2005 IEEE Workshop on. S. 27–32 (2005)

    Google Scholar 

  168. H. Cai, Y. Chen, J. Han, X. Zhang, B. Hu, Study on feature selection methods for depression detection using three-electrode EEG data. Interdisciplinary Sciences: Computational Life Sciences 10, 558–565 (2018)

    Google Scholar 

  169. R.A. Movahed, G.P. Jahromi, S. Shahyad, G.H. Meftahi, A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis. J. Neurosci. Methods 358, 109209 (2021)

    Article  Google Scholar 

  170. Y. Li, B. Hu, X. Zheng, X. Li, EEG-based mild depressive detection using differential evolution. IEEE Access 7, 7814–7822 (2018)

    Article  Google Scholar 

  171. M. Sharma, P. Achuth, D. Deb, S.D. Puthankattil, U.R. Acharya, An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn. Syst. Res. 52, 508–520 (2018)

    Article  Google Scholar 

  172. C. Kaur, A. Bisht, P. Singh, G. Joshi, EEG signal denoising using hybrid approach of Variational mode decomposition and wavelets for depression. Biomedical Signal Processing and Control 65, 102337 (2021)

    Article  Google Scholar 

  173. A. Khosla, P. Khandnor, T. Chand, Automated Diagnosis of Depression from EEG Signals Using Traditional and Deep Learning Approaches: A Comparative Analysis, in Biocybernetics and Biomedical Engineering, Bd. 42, (2021), S. 108–142

    Google Scholar 

  174. X. Ding, X. Yue, R. Zheng, C. Bi, D. Li, G. Yao, Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. J. Affect. Disord. 251, 156–161 (2019)

    Article  Google Scholar 

  175. J. Zhu, Z. Wang, T. Gong, S. Zeng, X. Li, B. Hu, et al., An improved classification model for depression detection using EEG and eye tracking data. IEEE Trans. Nanobioscience 19, 527–537 (2020)

    Article  Google Scholar 

  176. S. Mahato, N. Goyal, D. Ram, S. Paul, Detection of depression and scaling of severity using six channel EEG data. J. Med. Syst. 44, 1–12 (2020)

    Article  Google Scholar 

  177. H. Akbari, M.T. Sadiq, A.U. Rehman, M. Ghazvini, R.A. Naqvi, M. Payan, et al., Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features. Appl. Acoust. 179, 108078 (2021)

    Article  Google Scholar 

  178. H. Peng, C. **a, Z. Wang, J. Zhu, X. Zhang, S. Sun, et al., Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression. IEEE Access 7, 92630–92641 (2019)

    Article  Google Scholar 

  179. C. Jiang, Y. Li, Y. Tang, C. Guan, Enhancing EEG-based classification of depression patients using spatial information. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 566–575 (2021)

    Article  Google Scholar 

  180. H. Akbari, M.T. Sadiq, A.U. Rehman, Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain. Health Information Science and Systems 9, 1–15 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Kamal Al-Qazzaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Qazzaz, N.K., Aldoori, A.A. (2024). Die Rolle des EEG als Neuro-Marker für Patienten mit Depression: Ein systematischer Überblick. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-52856-9_3

Download citation

Publish with us

Policies and ethics

Navigation