Digital Dentistry Applications in Pediatric Dentistry

  • Chapter
  • First Online:
Digital Dentistry

Abstract

With the introduction of new materials and novel technology over the last decade, dentistry has achieved remarkable progress (Jasinevicius et al., J Dent Educ 68(11):1151–1162, 2004). Digital applications are broadly used in all disciplines of dental medicine including pediatric dentistry (Joda et al., Comput Biol Med 108:93–100, 2019). Today, computerized dentistry offices are common, using intraoral imaging devices, digital radiographic equipment, and digital tooth apex locators, as well as computer-aided design/computer-assisted manufacturing (CAD-CAM) systems (Jasinevicius et al., J Dent Educ 68(11):1151–1162, 2004).

These technological developments have had a wide range of effects on pediatric dentistry. Each subject covered in-depth in previous chapters of this book will be assessed from the perspective of pediatric dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moussa R, Alghazaly A, Althagafi N, Eshky R, Borzangy S. Effectiveness of virtual reality and interactive simulators on dental education outcomes: systematic review. Eur J Dent. 2022;16(1):14–31. https://doi.org/10.1055/s-0041-1731837. Epub 2021 Aug 24. PMID: 34428851; PMCID: PMC8890935.

    Article  PubMed  Google Scholar 

  2. Jasinevicius TR, Landers M, Nelson S, Urbankova A. An evaluation of two dental simulation systems: virtual reality versus contemporary non-computer-assisted. J Dent Educ. 2004;68(11):1151–62. PMID: 15520234.

    Article  PubMed  Google Scholar 

  3. Zafar S, Siddiqi A, Yasir M, Zachar JJ. Pedagogical development in local anaesthetic training in paediatric dentistry using virtual reality simulator. Eur Arch Paediatr Dent. 2021;22(4):667–74. https://doi.org/10.1007/s40368-021-00604-7. Epub 2021 Feb 10. PMID: 33566287; PMCID: PMC7874567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dixon J, Towers A, Martin N, Field J. Re-defining the virtual reality dental simulator: demonstrating concurrent validity of clinically relevant assessment and feedback. Eur J Dent Educ. 2021;25(1):108–16. https://doi.org/10.1111/eje.12581. Epub 2020 Aug 28. PMID: 32780500.

    Article  PubMed  Google Scholar 

  5. Mladenovic R, Dakovic D, Pereira L, Matvijenko V, Mladenovic K. Effect of augmented reality simulation on administration of local anaesthesia in paediatric patients. Eur J Dent Educ. 2020;24(3):507–12. https://doi.org/10.1111/eje.12529. Epub 2020 Apr 13. PMID: 32243051.

    Article  PubMed  Google Scholar 

  6. **a P, Lopes AM, Restivo MT. Virtual reality and haptics for dental surgery: a personal review. Vis Comput. 2013;29:433–47.

    Article  Google Scholar 

  7. Zafar S, Lai Y, Sexton C, Siddiqi A. Virtual reality as a novel educational tool in pre-clinical paediatric dentistry training: students’ perceptions. Int J Paediatr Dent. 2020;30(6):791–7. https://doi.org/10.1111/ipd.12648. Epub 2020 May 4. PMID: 32274838.

    Article  PubMed  Google Scholar 

  8. Wang D, Li T, Zhang Y, Hou J. Survey on multisensory feedback virtual reality dental training systems. Eur J Dent Educ. 2016;20(4):248–60. https://doi.org/10.1111/eje.12173. Epub 2015 Nov 7. PMID: 26547278.

    Article  CAS  PubMed  Google Scholar 

  9. Buchanan JA. Use of simulation technology in dental education. J Dent Educ. 2001;65(11):1225–31. PMID: 11765868.

    Article  CAS  PubMed  Google Scholar 

  10. Joda T, Gallucci GO, Wismeijer D, Zitzmann NU. Augmented and virtual reality in dental medicine: a systematic review. Comput Biol Med. 2019;108:93–100. https://doi.org/10.1016/j.compbiomed.2019.03.012. Epub 2019 Mar 15. PMID: 31003184.

    Article  CAS  PubMed  Google Scholar 

  11. Pottle J. Virtual reality and the transformation of medical education. Future Healthc J. 2019;6(3):181–5. https://doi.org/10.7861/fhj.2019-0036. PMID: 31660522; PMCID: PMC6798020.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Farronato M, Maspero C, Lanteri V, Fama A, Ferrati F, Pettenuzzo A, Farronato D. Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature. BMC Oral Health. 2019;19(1):135. https://doi.org/10.1186/s12903-019-0808-3. PMID: 31286904; PMCID: PMC6613250.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leleve A, Mcdaniel T, Rossa C. Haptic training simulation. Front Virtual Real. 2020;1(3):1–6. https://doi.org/10.3389/frvir.2020.00003.

    Article  Google Scholar 

  14. Konukseven EI, Onder ME, Mumcuoglu E, Kisnisci RS. Development of a visio-haptic integrated dental training simulation system. J Dent Educ. 2010;74(8):880–91. PMID: 20679458.

    Article  PubMed  Google Scholar 

  15. Yoshida Y, Yamaguchi S, Kawamoto Y, Noborio H, Murakami S, Sohmura T. Development of a multi-layered virtual tooth model for the haptic dental training system. Dent Mater J. 2011;30(1):1–6. https://doi.org/10.4012/dmj.2010-082. Epub 2011 Jan 26. PMID: 21282895.

    Article  PubMed  Google Scholar 

  16. Ranta JF, Aviles WA. The virtual reality dental training system—simulating dental procedures for the purpose of training dental students using haptics. Presentation at the Fourth Phantom Users Group Workshop, November 1999.

    Google Scholar 

  17. Thomas G, Johnson L, Dow S, Stanford C. The design and testing of a force feedback dental simulator. Comput Methods Prog Biomed. 2001;64(1):53–64. https://doi.org/10.1016/s0169-2607(00)00089-4. PMID: 11084233.

    Article  CAS  Google Scholar 

  18. Luciano C, Banerjee P, DeFanti T. Haptics-based virtual reality periodontal training simulator. Virtual Reality. 2009;13:69–85.

    Article  Google Scholar 

  19. Tse B, Harwin W, Barrow A, Quinn B, San Diego JP, Cox M. Design and development of a haptic dental training system—HapTEL. In: Presentation at EuroHaptics international conference on generating and perceiving tangible sensations 2010, Amsterdam, July 8–10, 2010.

    Google Scholar 

  20. Simodont. n.d. https://www.simodontdentaltrainer.com/. Accessed 20 Dec 2022.

  21. Virteasy Dental Haptic Simulator. n.d. https://virteasy.com/dental/. Accessed 20 Dec 2022.

  22. Pinkham JR, Berg JH. The practical importance of pediatric dentistry. In: Pinkham JR, Casamassimo PS, Fields HW, McTigue D, Nowak A, editors. Pediatric dentistry: infancy through adolescence. 4th ed. Amsterdam: Elsevier; 2005. p. 2–8.

    Google Scholar 

  23. Perry S, Bridges SM, Burrow MF. A review of the use of simulation in dental education. Simul Healthc. 2015;10(1):31–7. https://doi.org/10.1097/SIH.0000000000000059. PMID: 25574865.

    Article  PubMed  Google Scholar 

  24. Allen KD, Wallace DP. Management of children’s distress and disruptions during dental treatment I. In: Mostofsky DI, Fortune F, editors. Behavioral dentistry. 2nd ed. Hoboken: Wiley Blackwell; 2013. p. 209–28.

    Google Scholar 

  25. Papadopoulos L, Pentzou A, Louloudiadis K, Tsiatsos T. Design and evaluation of a simulation for pediatric dentistry in virtual worlds. J Med Internet Res. 2013;15(10):e240. https://doi.org/10.2196/jmir.2651.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brill WA. Child behavior in a private pediatric dental practice associated with types of visits, age and socio-economic factors. J Clin Pediatr Dent. 2000;25(1):1–7. https://doi.org/10.17796/jcpd.25.1.545025p1g72x730q. PMID: 11314346.

    Article  CAS  PubMed  Google Scholar 

  27. Boynton JR, Green TG, Johnson LA, Nainar SM, Straffon LH. The virtual child: evaluation of an internet-based pediatric behavior management simulation. J Dent Educ. 2007;71(9):1187–93. PMID: 17761625.

    Article  PubMed  Google Scholar 

  28. Hu S, Lai BWP. Increasing empathy for children in dental students using virtual reality. Int J Paediatr Dent. 2022;32(6):793–800. https://doi.org/10.1111/ipd.12957. Epub 2022 May 5. PMID: 35146818.

    Article  PubMed  Google Scholar 

  29. Dye BA. The global burden of oral disease: research and public health significance. J Dent Res. 2017;96(4):361–3. https://doi.org/10.1177/0022034517693567. Epub 2017 Feb 1. PMID: 28318392; PMCID: PMC6728669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H, Allison P, Watt RG. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249–60. https://doi.org/10.1016/S0140-6736(19)31146-8. Erratum in: Lancet 2019 Sep 21;394(10203):1010. PMID: 31327369.

    Article  PubMed  Google Scholar 

  31. Petersen PE. The burden of oral disease: challenges to improving oral health in the 21st century. Bull World Health Organ. 2005;83(1):3. Epub 2005 Jan 21. PMID: 15682238; PMCID: PMC2623460.

    PubMed  PubMed Central  Google Scholar 

  32. Marcenes W, Kassebaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A, Murray CJ. Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res. 2013;92(7):592–7. https://doi.org/10.1177/0022034513490168. Epub 2013 May 29. PMID: 23720570; PMCID: PMC4484374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. World Health Organization. Global oral health status report: towards universal health coverage for oral health by 2030. Geneva. Licence: CC BY-NC-SA 3.0 IGO. 2022. https://www.who.int/publications/i/item/9789240061484. Accessed 20 Dec 2022.

  34. GBD 2017 Oral Disorders Collaborators, Bernabe E, Marcenes W, Hernandez CR, Bailey J, Abreu LG, Alipour V, Amini S, Arabloo J, Arefi Z, Arora A, Ayanore MA, Bärnighausen TW, Bijani A, Cho DY, Chu DT, Crowe CS, Demoz GT, Demsie DG, Dibaji Forooshani ZS, Du M, El Tantawi M, Fischer F, Folayan MO, Futran ND, Geramo YCD, Haj-Mirzaian A, Hariyani N, Hasanzadeh A, Hassanipour S, Hay SI, Hole MK, Hostiuc S, Ilic MD, James SL, Kalhor R, Kemmer L, Keramati M, Khader YS, Kisa S, Kisa A, Koyanagi A, Lalloo R, Le Nguyen Q, London SD, Manohar ND, Massenburg BB, Mathur MR, Meles HG, Mestrovic T, Mohammadian-Hafshejani A, Mohammadpourhodki R, Mokdad AH, Morrison SD, Nazari J, Nguyen TH, Nguyen CT, Nixon MR, Olagunju TO, Pakshir K, Pathak M, Rabiee N, Rafiei A, Ramezanzadeh K, Rios-Blancas MJ, Roro EM, Sabour S, Samy AM, Sawhney M, Schwendicke F, Shaahmadi F, Shaikh MA, Stein C, Tovani-Palone MR, Tran BX, Unnikrishnan B, Vu GT, Vukovic A, Warouw TSS, Zaidi Z, Zhang ZJ, Kassebaum NJ. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. J Dent Res. 2020;99(4):362–73. https://doi.org/10.1177/0022034520908533. Epub 2020 Mar 2. PMID: 32122215; PMCID: PMC7088322.

    Article  Google Scholar 

  35. Watt RG, Daly B, Allison P, Macpherson LMD, Venturelli R, Listl S, Weyant RJ, Mathur MR, Guarnizo-Herreño CC, Celeste RK, Peres MA, Kearns C, Benzian H. Ending the neglect of global oral health: time for radical action. Lancet. 2019;394(10194):261–72. https://doi.org/10.1016/S0140-6736(19)31133-X. PMID: 31327370.

    Article  PubMed  Google Scholar 

  36. World Health Organization. Oral health. Key facts. 2022. https://www.who.int/news-room/fact-sheets/detail/oral-health. Accessed 20 Dec 2022.

  37. Bracksley-O’Grady S, Anderson K, Masood M. Oral health academics’ conceptualisation of health promotion and perceived barriers and opportunities in dental practice: a qualitative study. BMC Oral Health. 2021;21(1):165. https://doi.org/10.1186/s12903-021-01508-0. PMID: 33771160; PMCID: PMC8004464.

    Article  PubMed  PubMed Central  Google Scholar 

  38. World Dental Federation. The challenge of oral disease—a call for global action. The oral health atlas. 2nd ed. Geneva. 2015. https://www.fdiworlddental.org/sites/default/files/2021-03/complete_oh_atlas-2_0.pdf. Accessed 20 Dec 2022.

  39. Watt RG, Sheiham A. Integrating the common risk factor approach into a social determinants framework. Community Dent Oral Epidemiol. 2012;40(4):289–96. https://doi.org/10.1111/j.1600-0528.2012.00680.x. Epub 2012 Mar 20. PMID: 22429083.

    Article  PubMed  Google Scholar 

  40. Strippel H. Oral health promotion. In: Kirch W, editor. Encyclopedia of public health. Dordrecht: Springer; 2008. p. 1049–52.

    Chapter  Google Scholar 

  41. Fraihat N, Madae’en S, Bencze Z, Herczeg A, Varga O. Clinical effectiveness and cost-effectiveness of oral-health promotion in dental caries prevention among children: systematic review and meta-analysis. Int J Environ Res Public Health. 2019;16(15):2668. https://doi.org/10.3390/ijerph16152668. PMID: 31349691; PMCID: PMC6696287.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ghaffari M, Rakhshanderou S, Ramezankhani A, Noroozi M, Armoon B. Oral health education and promotion programmes: meta-analysis of 17-year intervention. Int J Dent Hyg. 2018;16(1):59–67. https://doi.org/10.1111/idh.12304. Epub 2017 Aug 24. PMID: 28836347.

    Article  CAS  PubMed  Google Scholar 

  43. Tsai C, Raphael S, Agnew C, McDonald G, Irving M. Health promotion interventions to improve oral health of adolescents: a systematic review and meta-analysis. Community Dent Oral Epidemiol. 2020;48(6):549–60. https://doi.org/10.1111/cdoe.12567. Epub 2020 Aug 7. PMID: 32767825.

    Article  PubMed  Google Scholar 

  44. Nakre PD, Harikiran AG. Effectiveness of oral health education programs: a systematic review. J Int Soc Prev Community Dent. 2013;3(2):103–15. https://doi.org/10.4103/2231-0762.127810.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang K, Yu KF, Liu P, Lee GHM, Wong MCM. Can mHealth promotion for parents help to improve their children’s oral health? A systematic review. J Dent. 2022;123:104185. https://doi.org/10.1016/j.jdent.2022.104185. Epub 2022 Jun 9. PMID: 35691452.

    Article  PubMed  Google Scholar 

  46. International Telecommunication Union (ITU). Facts and figures 2022. 2022. https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/. Accessed 20 Dec 2022.

  47. Fernández CE, Maturana CA, Coloma SI, Carrasco-Labra A, Giacaman RA. Teledentistry and mHealth for promotion and prevention of oral health: a systematic review and meta-analysis. J Dent Res. 2021;100(9):914–27. https://doi.org/10.1177/00220345211003828. Epub 2021 Mar 26. PMID: 33769123.

    Article  PubMed  Google Scholar 

  48. World Health Organization. WHO Global Observatory for eHealth. mHealth: new horizons for health through mobile technologies: second global survey on eHealth. Geneva. 2011. https://apps.who.int/iris/handle/10665/44607. Accessed 20 Dec 2022.

  49. Toniazzo MP, Nodari D, Muniz FWMG, Weidlich P. Effect of mHealth in improving oral hygiene: a systematic review with meta-analysis. J Clin Periodontol. 2019;46(3):297–309. https://doi.org/10.1111/jcpe.13083. PMID: 30761580.

    Article  PubMed  Google Scholar 

  50. Hashemian TS, Kritz-Silverstein D, Baker R. Text2Floss: the feasibility and acceptability of a text messaging intervention to improve oral health behavior and knowledge. J Public Health Dent. 2015;75(1):34–41. https://doi.org/10.1111/jphd.12068. Epub 2014 Aug 4. PMID: 25091471.

    Article  PubMed  Google Scholar 

  51. Lee M, Lee H, Kim Y, Kim J, Cho M, Jang J, Jang H. Mobile app-based health promotion programs: a systematic review of the literature. Int J Environ Res Public Health. 2018;15(12):2838. https://doi.org/10.3390/ijerph15122838. PMID: 30551555; PMCID: PMC6313530.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharif MO, Newton T, Cunningham SJ. A systematic review to assess interventions delivered by mobile phones in improving adherence to oral hygiene advice for children and adolescents. Br Dent J. 2019;227(5):375–82. https://doi.org/10.1038/s41415-019-0660-5. PMID: 31520040.

    Article  PubMed  Google Scholar 

  53. Fijačko N, Gosak L, Cilar L, Novšak A, Creber RM, Skok P, Štiglic G. The effects of gamification and oral self-care on oral hygiene in children: systematic search in app stores and evaluation of apps. JMIR Mhealth Uhealth. 2020;8(7):e16365. https://doi.org/10.2196/16365. PMID: 32673235; PMCID: PMC7381071.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kaczmarczyk KH, Gray-Burrows KA, Vinall-Collier K, Day PF. Oral health promotion apps: an assessment of message and behaviour change potential. Int J Qual Health Care. 2021;33(1):mzaa112. https://doi.org/10.1093/intqhc/mzaa112. PMID: 32909613.

    Article  PubMed  Google Scholar 

  55. Chen R, Santo K, Wong G, Sohn W, Spallek H, Chow C, Irving M. Mobile apps for dental caries prevention: systematic search and quality evaluation. JMIR Mhealth Uhealth. 2021;9(1):e19958. https://doi.org/10.2196/19958. PMID: 33439141; PMCID: PMC7840287.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Underwood B, Birdsall J, Kay E. The use of a mobile app to motivate evidence-based oral hygiene behaviour. Br Dent J. 2015;219(4):E2. https://doi.org/10.1038/sj.bdj.2015.660. PMID: 26315196.

    Article  CAS  PubMed  Google Scholar 

  57. McGrath C. Behavioral sciences in the promotion of oral health. J Dent Res. 2019;98(13):1418–24. https://doi.org/10.1177/0022034519873842. PMID: 31746683.

    Article  CAS  PubMed  Google Scholar 

  58. Dennison L, Morrison L, Conway G, Yardley L. Opportunities and challenges for smartphone applications in supporting health behavior change: qualitative study. J Med Internet Res. 2013;15(4):e86. https://doi.org/10.2196/jmir.2583. PMID: 23598614; PMCID: PMC3636318.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Antezana G, Venning A, Blake V, Smith D, Winsall M, Orlowski S, Bidargaddi N. An evaluation of behaviour change techniques in health and lifestyle mobile applications. Health Informatics J. 2020;26(1):104–13. https://doi.org/10.1177/1460458218813726. Epub 2018 Nov 30. PMID: 30501364.

    Article  PubMed  Google Scholar 

  60. Scheerman JFM, van Empelen P, van Loveren C, van Meijel B. A mobile app (whiteteeth) to promote good oral health behavior among Dutch adolescents with fixed orthodontic appliances: intervention map** approach. JMIR Mhealth Uhealth. 2018;6(8):e163. https://doi.org/10.2196/mhealth.9626. PMID: 30120085; PMCID: PMC6119215.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Scheerman JFM, van Meijel B, van Empelen P, Verrips GHW, van Loveren C, Twisk JWR, Pakpour AH, van den Braak MCT, Kramer GJC. The effect of using a mobile application (“WhiteTeeth”) on improving oral hygiene: a randomized controlled trial. Int J Dent Hyg. 2020;18(1):73–83. https://doi.org/10.1111/idh.12415. Epub 2019 Aug 9. PMID: 31291683; PMCID: PMC7004072.

    Article  PubMed  Google Scholar 

  62. Pitts NB. Diagnostic tools and measurements—impact on appropriate care. Community Dent Oral Epidemiol. 1997;25(1):24–35. https://doi.org/10.1111/j.1600-0528.1997.tb00896.x. PMID: 9088689.

    Article  CAS  PubMed  Google Scholar 

  63. Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods. J Dent Educ. 2001;65(10):960–8. PMID: 11699997.

    Article  CAS  PubMed  Google Scholar 

  64. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–9. https://doi.org/10.1016/S0140-6736(07)60031-2. PMID: 17208642.

    Article  CAS  PubMed  Google Scholar 

  65. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent. 2002;62(4):201–13. https://doi.org/10.1111/j.1752-7325.2002.tb03446.x. PMID: 12474624.

    Article  PubMed  Google Scholar 

  66. Kühnisch J, Bücher K, Hickel R. The intra/inter-examiner reproducibility of the new DIAGNOdent Pen on occlusal sites. J Dent. 2007;35(6):509–12. https://doi.org/10.1016/j.jdent.2007.02.001. Epub 2007 Mar 28. PMID: 17395355.

    Article  CAS  PubMed  Google Scholar 

  67. White SC, Pharoah MJ. Oral radiology: principles and interpretation. 5th ed. Toronto: Mosby; 2004. p. 297–313.

    Google Scholar 

  68. Abdelaziz M, Krejci I, Perneger T, Feilzer A, & Vazquez L. Near infrared transillumination compared with radiography to detect and monitor proximal caries: a clinical retrospective study. J Dent, 2018;70:40–45.

    Google Scholar 

  69. Russotto F, Tirone F, Salzano S, Borga FC, Paolino D, Ferraro A, & Botasso S. Clinical evaluation of near-infrared light transillumination (NIRT) as an interproximal caries detection tool in a large sample of patients in a private practice. J Radiol Imaging, 2016;1(1):1-5.

    Google Scholar 

  70. Schwendicke F, Tzschoppe M, Paris S. Radiographic caries detection: a systematic review and meta-analysis. J Dent. 2015;43(8):924–33. https://doi.org/10.1016/j.jdent.2015.02.009. Epub 2015 Feb 24. Erratum in: J Dent. 2021 Nov;114:103783. PMID: 25724114.

    Article  PubMed  Google Scholar 

  71. Zandoná AF, Zero DT. Diagnostic tools for early caries detection. J Am Dent Assoc. 2006;137(12):1675–84. https://doi.org/10.14219/jada.archive.2006.0113; quiz 1730. Erratum in: J Am Dent Assoc. 2007 Mar;138(3):298. PMID: 17138712.

    Article  PubMed  Google Scholar 

  72. AAPD. Prescribing dental radiographs for infants, children, adolescents, and individuals with special health care needs. Pediatr Dent. 2017;39(6):205–7. PMID: 29179358.

    Google Scholar 

  73. Gündüz K, Çelenk P. Çürük anısında kullanılan yeni yöntemler. Cumhuriyet Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2003;6:1.

    Google Scholar 

  74. Mialhe FL, Pereira AC, Meneghim Mde C, Ambrosano GM, Pardi V. The relative diagnostic yields of clinical, FOTI and radiographic examinations for the detection of approximal caries in youngsters. Indian J Dent Res. 2009;20(2):136–40. https://doi.org/10.4103/0970-9290.52881. PMID: 19553711.

    Article  PubMed  Google Scholar 

  75. Angmar-Månsson B, ten Bosch JJ. Advances in methods for diagnosing coronal caries—a review. Adv Dent Res. 1993;7(2):70–9. https://doi.org/10.1177/08959374930070021801. PMID: 8260014.

    Article  PubMed  Google Scholar 

  76. Peers A, Hill FJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fibre-optic transillumination, and bite-wing radiology for the diagnosis of small approximal carious lesions: an in vitro study. Caries Res. 1993;27(4):307–11. https://doi.org/10.1159/000261556. PMID: 8402807.

    Article  CAS  PubMed  Google Scholar 

  77. Rankovic JM, Kapor S, Khazaei Y, Crispin A, Schüler I, Krause F, Ekstrand K, Michou S, Eggmann F, Lussi A, Huysmans MC, Neuhaus K, Kühnisch J. Systematic review and meta-analysis of diagnostic studies of proximal surface caries. Clin Oral Investig. 2021;25(11):6069–79. https://doi.org/10.1007/s00784-021-04113-1. Epub 2021 Sep 4. PMID: 34480645; PMCID: PMC8531083.

    Article  Google Scholar 

  78. Astvaldsdóttir A, Ahlund K, Holbrook WP, de Verdier B, Tranæus S. Approximal caries detection by DIFOTI: in vitro comparison of diagnostic accuracy/efficacy with film and digital radiography. Int J Dent. 2012;2012:326401. https://doi.org/10.1155/2012/326401. Epub 2012 Nov 4. PMID: 23213335; PMCID: PMC3508587.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bin-Shuwaish M, et al. Estimation of clinical axial extension of Class II caries lesions with ultraspeed and digital radiographs: an in-vivo study. Oper Dent. 2008;33(6):613–21.

    Article  PubMed  Google Scholar 

  80. Antipoviene A, Girijotaite M, Bendoraitiene EA. Assessment of the depth of clinically detected approximal caries lesions using digital imaging fiber-optic transillumination in comparison to periapical radiographs. J Oral Maxillofac Res. 2020;11(1):e3. https://doi.org/10.5037/jomr.2020.11103. PMID: 32377327; PMCID: PMC7191380.

  81. Lara-Capi C, Cagetti MG, Lingström P, Lai G, Cocco F, Simark-Mattsson C, Campus G. Digital transillumination in caries detection versus radiographic and clinical methods: an in-vivo study. Dentomaxillofac Radiol. 2017;46(4):20160417.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gürses M, Ünlü N. Okluzal çürük teşhis yöntemlerine güncel bakış. Selcuk Dent J. 2017;4(3):153–61.

    Google Scholar 

  83. Korkut B, Tağtekin DA, Yanıkoğlu FÇ. Diş çürüklerinin erken teşhisi ve teşhiste yeni yöntemler: QLF, Diagnodent, Elektriksel İletkenlik ve Ultrasonik Sistem. Ege Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2011;32(2):55–67.

    Google Scholar 

  84. Sailer R, Paulus R, Hibst R. Analysis of carious lesions and subgingival calculi by fluorescence spectroscopy. Caries Res. 2001;35(4):267.

    Google Scholar 

  85. Choo-Smith LP, Dong CC, Cleghorn B, Hewko M. Shedding new light on early caries detection. J Can Dent Assoc. 2008;74(10):913–8. PMID: 19126361; PMCID: PMC2700544.

    PubMed  PubMed Central  Google Scholar 

  86. Tam LE, McComb D. Diagnosis of occlusal caries: part II. Recent diagnostic technologies. J Can Dent Assoc. 2001;67(8):459–64.

    CAS  PubMed  Google Scholar 

  87. Lenzi TL, Piovesan C, Mendes FM, Braga MM, Raggio DP. In vitro performance of QLF system and conventional methods for detection of occlusal caries around tooth-colored restorations in primary molars. Int J Paediatr Dent. 2016;26(1):26–34. https://doi.org/10.1111/ipd.12154. Epub 2015 Jan 21. PMID: 25604208.

    Article  PubMed  Google Scholar 

  88. Jablonski-Momeni A, Heinzel-Gutenbrunner M, Klein SM. In vivo performance of the VistaProof fluorescence-based camera for detection of occlusal lesions. Clin Oral Investig. 2014;18:1757–62.

    Google Scholar 

  89. Lussi A, Hibst R, Paulus R. DIAGNOdent: an optical method for caries detection. J Dent Res. 2004;83 Spec No C:C80–3. https://doi.org/10.1177/154405910408301s16. PMID: 15286128.

    Article  CAS  PubMed  Google Scholar 

  90. Lussi A, Imwinkelried S, Pitts N, Longbottom C, Reich E. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res. 1999;33(4):261–6. https://doi.org/10.1159/000016527. PMID: 10343088.

    Article  CAS  PubMed  Google Scholar 

  91. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109(1):14–9. https://doi.org/10.1034/j.1600-0722.2001.109001014.x. PMID: 11330928.

    Article  CAS  PubMed  Google Scholar 

  92. Shi XQ, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res. 2000;34(2):151–8. https://doi.org/10.1159/000016583. PMID: 10773633.

    Article  CAS  PubMed  Google Scholar 

  93. Olgen IC, Sonmez H, Bezgin T. Effects of different remineralization agents on MIH defects: a randomized clinical study. Clin Oral Investig. 2022;26(3):3227–38. https://doi.org/10.1007/s00784-021-04305-9. Epub 2021 Nov 25. PMID: 34821978.

    Article  PubMed  Google Scholar 

  94. De Benedetto MS, Morais CC, Novaes TF, de Almeida Rodrigues J, Braga MM, Mendes FM. Comparing the reliability of a new fluorescence camera with conventional laser fluorescence devices in detecting caries lesions in occlusal and smooth surfaces of primary teeth. Lasers Med Sci. 2011;26(2):157–62. https://doi.org/10.1007/s10103-010-0757-1. Epub 2010 Feb 16. PMID: 20157753.

    Article  PubMed  Google Scholar 

  95. Huth KC, Neuhaus KW, Gygax M, Bücher K, Crispin A, Paschos E, Hickel R, Lussi A. Clinical performance of a new laser fluorescence device for detection of occlusal caries lesions in permanent molars. J Dent. 2008;36(12):1033–40. https://doi.org/10.1016/j.jdent.2008.08.013. Epub 2008 Oct 18. PMID: 18930575.

    Article  CAS  PubMed  Google Scholar 

  96. Rodrigues JA, Hug I, Diniz MB, Lussi A. Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro. Caries Res. 2008;42(4):297–304. https://doi.org/10.1159/000148162. Epub 2008 Jul 29. PMID: 18663299.

    Article  CAS  PubMed  Google Scholar 

  97. Subka S, Rodd H, Nugent Z, & Deery C. In vivo validity of proximal caries detection in primary teeth, with histological validation. International journal of paediatric dentistry, 2019;29(4):429–38.

    Google Scholar 

  98. Akyıldız E, Özalp N. Diagnosis of early dental caries by traditional, contemporary and develo** imaging methods. EADS. 2022;49(1):38–45.

    Article  Google Scholar 

  99. Strassler HE, Sensi LG. Technology-enhanced caries detection and diagnosis. Compend Contin Educ Dent. 2008;29(8):464–5, 468, 470 passim. PMID: 18935786.

    PubMed  Google Scholar 

  100. Aktan AM, Cebe ME, Ciftci Me, Sirin Karaarslan E. A novel LED based device for occlusal caries detection. Lasers Med Sci. 2012;27:1157–63.

    Google Scholar 

  101. Ricketts DN, Kidd EA, Liepins PJ, Wilson RF. Histological validation of electrical resistance measurements in the diagnosis of occlusal caries. Caries Res. 1996;30(2):148–55. https://doi.org/10.1159/000262152. PMID: 8833140.

    Article  CAS  PubMed  Google Scholar 

  102. Longbottom C, Huysmans MC. Electrical measurements for use in caries clinical trials. J Dent Res. 2004;83 Spec No C:C76–9. https://doi.org/10.1177/154405910408301s15. PMID: 15286127.

    Google Scholar 

  103. Huysmans MC, Longbottom C, Pitts NB, Los P, Bruce PG. Impedance spectroscopy of teeth with and without approximal caries lesions—an in vitro study. J Dent Res. 1996;75(11):1871–8. https://doi.org/10.1177/00220345960750110901. PMID: 9003234.

    Article  CAS  PubMed  Google Scholar 

  104. Akgul S, Bala O, Yikilgan I. Performance of different methods for detection of incipient occlusal caries lesions: an in vitro study. Photomed Laser Surg. 2018;36(4):191–7.

    Google Scholar 

  105. Mandurah MM, Sadr A, Shimada Y, Kitasako Y, Nakashima S, Bakhsh TA, Tagami J, Sumi Y. Monitoring remineralization of enamel subsurface lesions by optical coherence tomography. J Biomed Opt. 2013;18(4):046006. https://doi.org/10.1117/1.JBO.18.4.046006. PMID: 23563920.

    Article  PubMed  Google Scholar 

  106. Tezuka H, Shimada Y, Matin K, Ikeda M, Sadr A, Sumi Y, Tagami J. Assessment of cervical demineralization induced by Streptococcus mutans using swept-source optical coherence tomography. J Med Imaging (Bellingham). 2016;3(1):014504. https://doi.org/10.1117/1.JMI.3.1.014504. Epub 2016 Mar 8. PMID: 27014718; PMCID: PMC4782037.

    Article  PubMed  Google Scholar 

  107. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev Dent. 2004;2(4):377–82. PMID: 16296256.

    PubMed  Google Scholar 

  108. Ergücü Z, Türkün LŞ. Çürükle ilgili klinik çalışmalarda kurgulama, yürütme ve analiz yöntemleri. Hacettepe Dişhekimliği Fakültesi Derg. 2007;31(1):25–35.

    Google Scholar 

  109. Otis LL, Everett MJ, Sathyam US, Colston BW Jr. Optical coherence tomography: a new imaging technology for dentistry. J Am Dent Assoc. 2000;131(4):511–4. https://doi.org/10.14219/jada.archive.2000.0210. PMID: 10770016.

    Article  CAS  PubMed  Google Scholar 

  110. Thomas CS, Sharma DS, Sheet D, Mukhopadhyay A, Sharma S. Cross-sectional visual comparison of remineralization efficacy of various agents on early smooth surface caries of primary teeth with swept source optical coherence tomography. J Oral Biol Craniofac Res. 2021;11(4):628–37. https://doi.org/10.1016/j.jobcr.2021.09.006. Epub 2021 Sep 20. PMID: 34603951; PMCID: PMC8473773.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lederer A, Kunzelmann KH, Heck K, Hickel R, Litzenburger F. In vitro validation of near-infrared transillumination at 780 nm for the detection of caries on proximal surfaces. Clin Oral Investig. 2019;23(11):3933–40. https://doi.org/10.1007/s00784-019-02824-0. Epub 2019 Jan 28. PMID: 30693402.

    Article  PubMed  Google Scholar 

  112. Baltacıoğlı IH, Orhan K. Comparison of diagnostic methods for early interproximal caries detection with near-infrared light transillumination: an in vivo study. BMC Oral Health. 2017;17(1):130.

    Article  Google Scholar 

  113. Alamoudi NM, Khan JA, El-Ashiry EA, Felemban OM, Bagher SM, Al-Tuwirqi AA. Accuracy of the DIAGNOcam and bite-wing radiographs in the diagnosis of cavitated proximal carious lesions in primary molars. Niger J Clin Pract. 2019;22:1576–82.

    Article  CAS  PubMed  Google Scholar 

  114. Alrayyes S, Horn A, Kratunova E, Koerber A. Evaluation of a near-infrared light transillumination device for caries detection in interproximal primary molar surfaces. J Dent Child (Chic). 2021;88(3):180–6. PMID: 34937628.

    PubMed  Google Scholar 

  115. Ng SY, Ferguson MW, Payne PA, Slater P. Ultrasonic studies of unblemished and artificially demineralized enamel in extracted human teeth: a new method for detecting early caries. J Dent. 1988;16(5):201–9. https://doi.org/10.1016/0300-5712(88)90070-x. PMID: 3063732.

    Article  CAS  PubMed  Google Scholar 

  116. Yanikoglu FC, Ozturk F, Hayran O, Analoui M, Stookey GK. Detection of natural white spot caries lesions by an ultrasonic system. Caries Res. 2000;34(3):225.

    Article  Google Scholar 

  117. Fontana M, Yanıkoğlu FÇ, Özturk F. Comparison of QLF, ultrasound and confocal microscopy in the measurement of remineralization. Caries Res. 1999;33:357–65.

    Google Scholar 

  118. Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. 2020;63(15):8003–24. https://doi.org/10.1021/acs.jmedchem.9b02115. Epub 2020 Apr 17. PMID: 32255358.

    Article  CAS  PubMed  Google Scholar 

  119. Hazra Y, Rao A, Suprabha BS. 3-D printing: its applications in pediatric dental practice: a review of literature. Indian J Contemp Dent. 2022;10(2):17–23.

    Google Scholar 

  120. Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, Lu X, Shi H, Lee ES, Jiang HB. A review of 3D printing in dentistry: technologies, affecting factors, and applications. Scanning. 2021;2021:9950131. https://doi.org/10.1155/2021/9950131. PMID: 34367410; PMCID: PMC8313360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kalaivanan D, Kalimreddy P, Kodical SR, Ramasetty AP. Three dimensional printing—from a pediatric dentist’s perspective: 3D printing in pediatric dentistry—a literature review. Int J Pedod Rehabil. 2022;7(1):42–9.

    Google Scholar 

  122. Burhardt L, Livas C, Kerdijk W, van der Meer WJ, Ren Y. Treatment comfort, time perception, and preference for conventional and digital impression techniques: a comparative study in young patients. Am J Orthod Dentofac Orthop. 2016;150(2):261–7.

    Article  Google Scholar 

  123. Yılmaz H, Aydın MN. Digital versus conventional impression method in children: Comfort, preference and time. International J Pediatr Dent. 2019;29(6):728-735.

    Google Scholar 

  124. Fleming PS, Marinho V, Johal A. Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofac Res. 2011;14(1):1–16. https://doi.org/10.1111/j.1601-6343.2010.01503.x. Epub 2010 Nov 22. PMID: 21205164.

    Article  CAS  PubMed  Google Scholar 

  125. Grünheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofac Orthop. 2014;146(5):673–82. https://doi.org/10.1016/j.ajodo.2014.07.023. Epub 2014 Oct 28. PMID: 25439218.

    Article  Google Scholar 

  126. Garino F, Garino GB. Comparison of dental arch measurements between stone and digital casts. World J Orthod. 2002;3(3):250–4.

    Google Scholar 

  127. Logozzo S, Franceschini G, Kilpelä A, Caponi M, Governi L, Blois L. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J Med Technol. 2011;5(1):1–2.

    Google Scholar 

  128. Patzelt SB, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc. 2014;145(6):542–51. https://doi.org/10.14219/jada.2014.23. PMID: 24878708.

    Article  PubMed  Google Scholar 

  129. Dhanotra KG, Bhatıa R. Digitainers—digital space maintainers: a review. Int J Clin Pediatr Dent. 2021;14(Suppl 1):S69.

    PubMed  PubMed Central  Google Scholar 

  130. Soni HK. Application of CAD-CAM for fabrication of metal-free band and loop space maintainer. J Clin Diagn Res. 2017;11(2):ZD14–6. https://doi.org/10.7860/JCDR/2017/23459.9246. Epub 2017 Feb 1. PMID: 28384989; PMCID: PMC5376843.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Khanna S, Rao D, Panwar S, Pawar BA, Ameen S. 3D printed band and loop space maintainer: a digital game changer in preventive orthodontics. J Clin Pediatr Dent. 2021;45(3):147–51. https://doi.org/10.17796/1053-4625-45.3.1. PMID: 34192758.

    Article  PubMed  Google Scholar 

  132. Pawar BA. Maintenance of space by innovative three-dimensional-printed band and loop space maintainer. J Indian Soc Pedod Prev Dent. 2019;37(2):205–8. https://doi.org/10.4103/JISPPD.JISPPD_9_19. PMID: 31249187.

    Article  PubMed  Google Scholar 

  133. Tokuc M, Yilmaz H. Comparison of fit accuracy between conventional and CAD/CAM-fabricated band-loop space maintainers. Int J Paediatr Dent. 2022;32(5):764–71. https://doi.org/10.1111/ipd.12955. Epub 2022 May 20. PMID: 35122341.

    Article  PubMed  Google Scholar 

  134. Ierardo G, Luzzi V, Lesti M, Vozza I, Brugnoletti O, Polimeni A, Bossù M. Peek polymer in orthodontics: a pilot study on children. J Clin Exp Dent. 2017;9(10):e1271–5. https://doi.org/10.4317/jced.54010. PMID: 29167720; PMCID: PMC5694159.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kun J, Dinggui Z, Wei L, Li D, Wang X, **g JL, Wu G. Clinical application of digital space maintainer fabricated by polyetherketoneketone for premature loss of deciduous teeth [J/CD]. Chin J Stomatol. 2019;13:368–72.

    Google Scholar 

  136. Demirel A, Bezgin T, Akaltan F, Sarı Ş. Resin nanoceramic CAD/CAM restoration of the primary molar: 3-year follow-up study. Case Rep Dent. 2017;2017:3517187. https://doi.org/10.1155/2017/3517187. Epub 2017 Jun 20. PMID: 28713601; PMCID: PMC5496112.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93(12):1232–4. https://doi.org/10.1177/0022034514553976. Epub 2014 Oct 24. PMID: 25344335; PMCID: PMC4462808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Güzel KU, Akarçay Ç. İntraoral Tarayıcı ve Cad/Cam Sistemlerinin Çocuk Diş Hekimliğinde Kullanım Alanları. ADO Klinik Bilimler Dergisi. 2022;11(1):78–84.

    Article  Google Scholar 

  139. Oguz EI, Bezgin T, Orhan AI, Orhan K. Comparative evaluation of adaptation of esthetic prefabricated fiberglass and CAD/CAM crowns for primary teeth: microcomputed tomography analysis. Biomed Res Int. 2021;2021:1011661. https://doi.org/10.1155/2021/1011661. PMID: 34616841; PMCID: PMC8487845.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Oğuz EI, Bezgin T, Işil Orhan A, Buyuksungur A, Orhan K. Fracture resistance of esthetic prefabricated and custom-made crowns for primary molars after artificial aging. Pediatr Dent. 2022;44(5):368–74. PMID: 36309781.

    PubMed  Google Scholar 

  141. Dursun E, Monnier-Da Costa A, Moussally C. Chairside CAD/CAM composite onlays for the restoration of primary molars. J Clin Pediatr Dent. 2018;42(5):349–54. https://doi.org/10.17796/1053-4625-42.5.5. Epub 2018 May 15. PMID: 29763356.

    Article  PubMed  Google Scholar 

  142. Mittal HC, Goyal A, Gauba K, Kapur A. Clinical performance of indirect composite onlays as esthetic alternative to stainless steel crowns for rehabilitation of a large carious primary molar. J Clin Pediatr Dent. 2016;40(5):345–52. https://doi.org/10.17796/1053-4628-40.5.345. PMID: 27617373.

    Article  PubMed  Google Scholar 

  143. Bilgin MS, Erdem A, Tanrıver M. CAD/CAM endocrown fabrication from a polymer-infiltrated ceramic network block for primary molar: a case report. J Clin Pediatr Dent. 2016;40(4):264–8. https://doi.org/10.17796/1053-4628-40.4.264. PMID: 27471802.

    Article  PubMed  Google Scholar 

  144. Davidovich E, Dagon S, Tamari I, Etinger M, Mijiritsky E. An innovative treatment approach using digital workflow and CAD-CAM part 2: the restoration of molar incisor hypomineralization in children. Int J Environ Res Public Health. 2020;17(5):1499. https://doi.org/10.3390/ijerph17051499. PMID: 32110963; PMCID: PMC7084897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Halal R, Nohra J, Akel H. Conservative anterior treatment with CAD-CAM technology and polymer-infiltrated ceramic for a child with amelogenesis imperfecta: a 2-year follow-up. J Prosthet Dent. 2018;119(5):710–2. https://doi.org/10.1016/j.prosdent.2017.07.018. Epub 2017 Sep 27. PMID: 28967409.

    Article  PubMed  Google Scholar 

  146. Moussally C, Fron-Chabouis H, Charrière A, Maladry L, Dursun E. Full-mouth rehabilitation of hypocalcified-type amelogenesis imperfecta with chairside computer-aided design and computer-aided manufacturing: a case report. Oper Dent. 2019;44(3):E145–58. https://doi.org/10.2341/17-241-T. Epub 2019 Mar 8. PMID: 30849013.

    Article  CAS  PubMed  Google Scholar 

  147. Noirrit E, Chabreron O, Nasr K, Esclassan R. A contribution of CAD/CAM treatment of a dental trauma in a special care patient. Spec Care Dentist. 2018;38(1):55–7. https://doi.org/10.1111/scd.12261. Epub 2017 Dec 18. PMID: 29251793.

    Article  PubMed  Google Scholar 

  148. Anssari Moin D, Derksen W, Verweij JP, van Merkesteyn R, Wismeijer D. A novel approach for computer-assisted template-guided autotransplantation of teeth with custom 3D designed/printed surgical tooling. An ex vivo proof of concept. J Oral Maxillofac Surg. 2016;74(5):895–902. https://doi.org/10.1016/j.joms.2016.01.033. Epub 2016 Jan 29. PMID: 26907556.

    Article  PubMed  Google Scholar 

  149. Cahuana-Bartra P, Cahuana-Cárdenas A, Brunet-Llobet L, Ayats-Soler M, Miranda-Rius J, Rivera-Baró A. The use of 3D additive manufacturing technology in autogenous dental transplantation. 3D Print Med. 2020;6(1):16. https://doi.org/10.1186/s41205-020-00070-9. PMID: 32710145; PMCID: PMC7379801.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Al-Rimawi A, EzEldeen M, Schneider D, Politis C, Jacobs R. 3D printed temporary veneer restoring autotransplanted teeth in children: design and concept validation ex vivo. Int J Environ Res Public Health. 2019;16(3):496. https://doi.org/10.3390/ijerph16030496. PMID: 30754648; PMCID: PMC6388193.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: a review. Dent Res J (Isfahan). 2016;13(5):379–86. https://doi.org/10.4103/1735-3327.192266. PMID: 27857762; PMCID: PMC5090995.

    Article  PubMed  Google Scholar 

  152. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33(4):377–90. https://doi.org/10.1016/j.joen.2006.09.013. Epub 2007 Feb 20. PMID: 17368324.

    Article  PubMed  Google Scholar 

  153. Bezgin T, Sönmez H. Review of current concepts of revascularization/revitalization. Dent Traumatol. 2015;31(4):267–73. https://doi.org/10.1111/edt.12177. Epub 2015 May 6. PMID: 25950886.

    Article  PubMed  Google Scholar 

  154. Bezgin T, Yilmaz AD, Celik BN, Kolsuz ME, Sonmez H. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J Endod. 2015;41(1):36–44. https://doi.org/10.1016/j.joen.2014.10.004. Epub 2014 Nov 12. PMID: 25459571.

    Article  PubMed  Google Scholar 

  155. Raddall G, Mello I, Leung BM. Biomaterials and scaffold design strategies for regenerative endodontic therapy. Front Bioeng Biotechnol. 2019;7:317. https://doi.org/10.3389/fbioe.2019.00317. PMID: 31803727; PMCID: PMC6874017.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Li S, Xu Y, Yu J, Becker ML. Enhanced osteogenic activity of poly (ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials. 2017;141:176–87.

    Article  CAS  PubMed  Google Scholar 

  157. Eden E, editor. Evidence-based caries prevention. Berlin: Springer; 2016.

    Google Scholar 

  158. You W, Hao A, Li S, Wang Y, **a B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020;20(1):1–7.

    Article  Google Scholar 

  159. Wang Y, Hays RD, Marcus M, Maida CA, Shen J, ** children’s oral health assessment toolkits using machine learning algorithm. JDR Clin Transl Res. 2020;5(3):233–43.

    CAS  Google Scholar 

  160. Karhade DS, Roach J, Shrestha P, Simancas-Pallares MA, Ginnis J, Burk ZJ, et al. An automated machine learning classifier for early childhood caries. Pediatr Dent. 2021;43(3):191–7.

    PubMed  PubMed Central  Google Scholar 

  161. Ramos-Gomez F, Marcus M, Maida CA, Wang Y, Kinsler JJ, **ong D, et al. Using a machine learning algorithm to predict the likelihood of presence of dental caries among children aged 2 to 7. Dent J. 2021;9(12):141.

    Article  Google Scholar 

  162. Schlickenrieder A, Meyer O, Schönewolf J, Engels P, Hickel R, Gruhn V, et al. Automatized detection and categorization of fissure sealants from intraoral digital photographs using artificial intelligence. Diagnostics. 2021;11(9):1608.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zaborowicz K, Biedziak B, Olszewska A, Zaborowicz M. Tooth and bone parameters in the assessment of the chronological age of children and adolescents using neural modelling methods. Sensors. 2021;21(18):6008.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Doméjean S, Banerjee A, Featherstone JD. Caries risk/susceptibility assessment: its value in minimum intervention oral healthcare. Br Dent J. 2017;223(3):191–7.

    Article  PubMed  Google Scholar 

  165. Mejàre I, Axelsson S, Dahlën GA, Espelid I, Norlund A, Tranæus S, Twetman S. Caries risk assessment. A systematic review. Acta Odontol Scand. 2014;72(2):81–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Işıl Orhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orhan, A.I., Bezgin, T., Orhan, K. (2024). Digital Dentistry Applications in Pediatric Dentistry. In: Delantoni, A., Orhan, K. (eds) Digital Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-52826-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52826-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52825-5

  • Online ISBN: 978-3-031-52826-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation