Hydrodynamic Transient Tip Streaming

  • Chapter
  • First Online:
Tip Streaming of Simple and Complex Fluids

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 137))

  • 54 Accesses

Abstract

As mentioned in the previous chapter, tip streaming can be categorized into two different classes: transient tip streaming and microdrip**/microjetting. This chapter reviews some transient tip streaming flows produced by hydrodynamics means. Specifically, we consider a surfactant-loaded droplet in a linear extensional flow, the viscous entrainment of selective withdrawal, and bubble bursting. The chapter closes by mentioning other examples that have received less attention.

We consider both the subcritical steady flow and the onset of tip streaming in a droplet submerged in a linear extensional flow, paying attention to the effect of a surfactant monolayer. We present the same analysis for the viscous entrainment of selective withdrawal. With respect to bubble bursting, we review the major results for simple liquids and summarize recent studies for liquids containing polymers and surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond A 138:41–48

    Article  Google Scholar 

  2. Taylor GI (1964) Conical free surfaces and fluid interfaces. In: Gortler H (ed) Proceedings of the 11th international congress of applied mathematics. Springer, Heidelberg, pp 790–796

    Google Scholar 

  3. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146:501–523

    Article  Google Scholar 

  4. Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66

    Article  Google Scholar 

  5. Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Ann Rev Fluid Mech 26:65–102

    Article  MathSciNet  Google Scholar 

  6. Buckmaster JD (1972) Pointed bubbles in slow viscous flow. J Fluid Mech 55:385–400

    Article  Google Scholar 

  7. Eggers J, Courrech du Pont S (2009) Numerical analysis of tips in viscous flow. Phys Rev E 79(066):311

    Google Scholar 

  8. Courrech du Pont S, Eggers J (2020) Fluid interfaces with very sharp tips in viscous flow. Proc Natl Acad Sci 117:32,238–32,243

    Google Scholar 

  9. De Bruijn RA (1993) Tipstreaming of drops in simple shear flows. Chem Eng Sci 48:277–284

    Article  Google Scholar 

  10. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929

    Article  Google Scholar 

  11. Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 167:241–283

    Article  Google Scholar 

  12. Eggleton CD, Tsai TM, Stebe KJ (2001) Tip streaming from a drop in the presence of surfactants. Phys Rev Lett 87(048):302

    Google Scholar 

  13. Wang Q, Siegel M, Booty MR (2014) Numerical simulation of drop and bubble dynamics with soluble surfactant. Phys Fluids 26(052):102

    Google Scholar 

  14. Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow influence of surface viscosity. J Fluid Mech 934:A26

    Google Scholar 

  15. Vlahovska PM, Lawzdziewicz JB, Loewenberg M (2009) Small-deformation theory for a surfactant-covered drop in linear flows. J Fluid Mech 624:293–337

    Article  MathSciNet  Google Scholar 

  16. Scriven LE (1960) Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem Eng Sci 12:98–108

    Article  Google Scholar 

  17. Langevin D (2014) Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu Rev Fluid Mech 46:4765

    Article  MathSciNet  Google Scholar 

  18. Kim K, Choi SQ, Zell ZA, Squires TM, Zasadzinski JA (2013) Effect of cholesterol nanodomains on monolayer morphology and dynamics. Proc Natl Acad Sci 110:E3054–E3060

    Article  Google Scholar 

  19. Samaniuk JR, Mermant J (2014) Micro and macrorheology at fluid-fluid interfaces. Soft Matt 10:7023–7033

    Article  Google Scholar 

  20. Zell ZA, Nowbahar A, Mansard V, Leal LG, Deshmukh SS, Mecca JM, Tucker CJ, Squires TM (2014) Surface shear inviscidity of soluble surfactants. Proc Natl Acad Sci 111:3677–3682

    Article  Google Scholar 

  21. Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM (2020) Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep 10(16):065

    Google Scholar 

  22. Rubio M, Montanero JM, Eggers J, Herrada MA (2024) Stable production of fluid jets with vanishing diameters via tip streaming. J Flui Mech 893: A4

    Google Scholar 

  23. Lister JR (1989) Selective withdrawal from a viscous two-layer system. J Fluid Mech 198:231–254

    Article  MathSciNet  Google Scholar 

  24. Cohen I, Li H, Hougland JL, Mrksich M, Nagel SR (2001) Using selective withdrawal to coat microparticles. Science 292:265–267

    Article  Google Scholar 

  25. Case SC, Nagel SR (2007) Spout states in the selective withdrawal of immiscible fluids through a nozzle suspended above a two-fluid interface. Phys Rev Lett 98(114):501

    Google Scholar 

  26. Blanchette F, Zhang WW (2009) Force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 102(144):501

    Google Scholar 

  27. Evangelio A, Campo-Cortés F, Gordillo JM (2015) Pressure gradient induced generation of microbubbles. J Fluid Mech 778:653–668

    Article  MathSciNet  Google Scholar 

  28. Cohen I, Nagel SR (2002) Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys Rev Lett 88(074):501

    Google Scholar 

  29. Cohen I (2004) Scaling and transition structure dependence on the fluid viscosity ratio in the selective withdrawal transition. Phys Rev E 70(026):302

    Google Scholar 

  30. Courrech du Pont S, Eggers J (2006) Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Phys Rev Lett 96(034):501

    Google Scholar 

  31. Berkenbusch MK, Cohen I, Zhang WW (2008) Liquid interfaces in viscous straining flows: numerical studies of the selective withdrawal transition. J Fluid Mech 613:171–203

    Article  MathSciNet  Google Scholar 

  32. Eggers J, Courrech du Pont S (2010) Comment on force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 105(089):401

    Google Scholar 

  33. Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: experiments. J Non-Newtonian Fluid Mech 165:829–838

    Article  Google Scholar 

  34. Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: computations. J Non-Newtonian Fluid Mech 165:839–851

    Article  Google Scholar 

  35. Rubio M, Montanero JM (2023) Influence of a soluble surfactant on the transition to tip streaming. Exp Therm Fluid Sci 141(110):776

    Google Scholar 

  36. Collins RT, Jones JJ, Harris MT, Basaran OA (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4:149–154

    Article  Google Scholar 

  37. Ferrera C, López-Herrera JM, Herrada MA, Montanero JM, Acero AJ (2013) Dynamical behavior of electrified pendant drops. Phys Fluids 25(012):104

    Google Scholar 

  38. Lhuissier H, Villermaux E (2012) Bursting bubble aerosols. J Fluid Mech 696:5–44

    Article  Google Scholar 

  39. Jiang X, Rotily L, Villermaux E, Wang X (2022) Submicron drops from flap** bursting bubbles. Proc Natl Acad Sci 19:34

    Google Scholar 

  40. Villermaux E, Wang X, Deike L (2023) Bubbles spray aerosols: certitudes and mysteries. Proc Natl Acad Sci Nexus (in Press)

    Google Scholar 

  41. Duchemin L, Popinet S, Josserand C, Zaleski S (2002) Jet formation in bubbles bursting at a free surface. Phys Fluids 14:3000–3008

    Article  Google Scholar 

  42. Ghabache E, Antkowiak A, Josserand C, Seon T (2014) On the physics of fizziness: How bubble bursting controls droplets ejection. Phys Fluids 26(121):701

    Google Scholar 

  43. Blanchard D, Syzdek L (1970) Mechanism for the water-to-air transfer and concentration of bacteria. Science 170:626–628

    Article  Google Scholar 

  44. Boyce SG (1951) Source of atmospheric salts. Science 113:620–621

    Article  Google Scholar 

  45. Deike L (2022) Mass transfer at the ocean-atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu Rev Fluid Mech 54:191–224

    Article  Google Scholar 

  46. MacIntyre F (1972) Flow patterns in breaking bubbles. J Geophys Res 77:5211–5228

    Article  Google Scholar 

  47. Gañán-Calvo AM (2023) The ocean fine spray. Phys Fluids 35(023):317

    Google Scholar 

  48. Lee JS, Weon BM, Park SJ, Je JH, Fezzaa K, Lee WK (2011) Size limits the formation of liquid jets during bubble bursting. Nat Commun 2:367

    Article  Google Scholar 

  49. Walls PLL, Henaux L, Bird JC (2015) Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production. Phys Rev E 92(021):002(R)

    Google Scholar 

  50. Ji B, Yang Z, Feng J (2021) Compound jetting from bubble bursting at an air-oil-water interface. Nat Commun 12:6305

    Article  Google Scholar 

  51. Ghabache E, Seon T (2016) Size of the top jet drop produced by bubble bursting. Phys Rev Fluids 1(051):901(R)

    Google Scholar 

  52. Gañán-Calvo AM (2017) Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys Rev Lett 119(204):502

    Google Scholar 

  53. Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM (2016) The onset of electrospray: the universal scaling laws of the first ejection. Sci Rep 6(32):357

    Google Scholar 

  54. Gañán-Calvo AM (2018) Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit. Phys Rev Fluids 3(091):601(R)

    Google Scholar 

  55. Deike L, Ghabache E, Liger-Belair G, Das AK, Zaleski S, Popinet S, Seon T (2018) Dynamics of jets produced by bursting bubbles. Phys Rev Fluids 3(013):603

    Google Scholar 

  56. Berny A, Deike L, Seon T, Popinet S (2020) Role of all jet drops in mass transfer from bursting bubbles. Phys Rev Fluids 5(033):605

    Google Scholar 

  57. Gañán-Calvo AM, López-Herrera JM (2021) On the physics of transient ejection from bubble bursting. J Fluid Mech 929:A12

    Article  MathSciNet  Google Scholar 

  58. Yang Z, Ji B, Ault JT, Feng J (2023) Enhanced singular jet formation in oil-coated bubble bursting. Nat Phys 19:884–890

    Article  Google Scholar 

  59. Berny A, Deike L, Seon T, Popinet S (2022) Size and speed of jet drops are robust to initial perturbations. Phys Rev Fluids 7(013):602

    Google Scholar 

  60. Lai CY, Eggers J, Deike L (2018) Bubble bursting: universal cavity and jet profiles. Phys Rev Lett 121(144):501

    Google Scholar 

  61. Gordillo JM, Rodriguez-Rodriguez J (2019) Capillary waves control the ejection of bubble bursting jets. J Fluid Mech 867:556–571

    Article  MathSciNet  Google Scholar 

  62. Blanco-Rodríguez FJ, Gordillo JM (2020) On the sea spray aerosol originated from bubble bursting jets. J Fluid Mech 886:R2

    Article  MathSciNet  Google Scholar 

  63. Feng J, Roché M, Vigolo D, Arnaudov LN, Stoyanov SD, Gurkov TD, Tsutsumanova GG, Stone HA (2014) Nanoemulsions obtained via bubble-bursting at a compound interface. Nat Phys 10:606–612

    Google Scholar 

  64. Dubitsky L, McRae O, Bird JC (2023) Enrichment of scavenged particles in jet drops determined by bubble size and particle position. Phys Rev Lett 130(054):001

    Google Scholar 

  65. Sanjay V, Lohse D, Jalaal M (2021) Bursting bubble in a viscoplastic medium. J Fluid Mech 922:A2

    Article  MathSciNet  Google Scholar 

  66. Neel B, Deike L (2021) Collective bursting of free-surface bubbles, and the role of surface contamination. J Fluid Mech 917:A46

    Article  Google Scholar 

  67. Neel B, Erinin MA, Deike L (2021) Role of contamination in optimal droplet production by collective bubble bursting. Geophys Res Lett 49:e2021GL096,740

    Google Scholar 

  68. Constante-Amores CR, Kahouadji L, Batchvarov A, Shin S, Chergui J, Juric D, Matar O (2021) Dynamics of a surfactant-laden bubble bursting through an interface. J Fluid Mech 911:A57

    Article  MathSciNet  Google Scholar 

  69. Boulton-Stone JM (1995) The effect of surfactant on bursting gas bubbles. J Fluid Mech 302:231–257

    Article  Google Scholar 

  70. Roche M, Aytouna M, Bonn D, Kellay H (2009) Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys Rev Lett 103(264):501

    Google Scholar 

  71. Mayer HC, Krechetnikov R (2012) Landau-Levich flow visualization: revealing the flow topology responsible for the film thickening phenomena. Phys Fluids 24(052):103

    Google Scholar 

  72. Kamat PM, Wagoner BW, Castrejón-Pita AA, Castrejón-Pita JR, Anthony CR, Basaran OA (2020) Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments. J Fluid Mech 899:A28

    Article  MathSciNet  Google Scholar 

  73. Pierre J, Poujol M, Seon T (2022) Influence of surfactant concentration on drop production by bubble bursting. Phys Rev Fluids 7(073):602

    Google Scholar 

  74. Vega E, Montanero J (2024) Influence of a surfactant on bubble bursting. Exp Therm Fluid Sci 151(111):097

    Google Scholar 

  75. Rodríguez-Díaz P, Rubio A, Montanero JM, Gañán-Calvo A, Cabezas MG (2023) Bubble bursting in a weakly-viscoelastic liquid. Phys Fluids 35(102):107

    Google Scholar 

  76. Ji B, Yang Z, Wang Z, Ewoldt RH, Feng J (2023) Secondary bubble entrainment via primary bubble bursting at a viscoelastic surface. Phys Rev Lett 131(104):002

    Google Scholar 

  77. Zeff BW, Kleber B, Fineberg J, Lathrop DP (2000) Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403:401–404

    Article  Google Scholar 

  78. Antokowiak A, Bremond N, Le Dices S, Villermaux E (2007) Short-term dynamics of a density interface following an impact. J Fluid Mech 577:241–250

    Article  Google Scholar 

  79. Bartolo D, Josserand C, Bonn D (2006) Singular jets and bubbles in drop impact. Phys Rev Lett 96(124):501

    Google Scholar 

  80. Andersen A, Bohr T, Stenum B, Rasmussen JJ, Lautrup B (2003) Anatomy of a bathtub vortex. Phys Rev Lett 91(104):502

    Google Scholar 

  81. Bergmann R, Andersen A, van der Meer D, Bohr T (2009) Bubble pinch-off in a rotating flow. Phys Rev Lett 102(104):502

    Google Scholar 

  82. Schroll RD, Wunenburger R, Casner A, Zhang WW, Delville JP (2007) Liquid transport due to light scattering. Phys Rev Lett 98(133):601

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Montanero .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montanero, J.M. (2024). Hydrodynamic Transient Tip Streaming. In: Tip Streaming of Simple and Complex Fluids. Fluid Mechanics and Its Applications, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-031-52768-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52768-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52767-8

  • Online ISBN: 978-3-031-52768-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation