CNR’s Contribution to the Advancement of Soil Science in Italy

  • Chapter
  • First Online:
Soil Science in Italy

Abstract

The contributions to soil science due to the researchers of the National Research Council of Italy (Consiglio Nazionale delle Ricerche, CNR) are illustrated in an historical perspective from the foundation of CNR in 1923 to the first two decades of the XXI century. The foundation of the first CNR Institute explicitly focusing on soil science was in 1963, and since the very beginning, the research activities focusing on soils function and properties were characterised by a multidisciplinary approach. This resulted over a couple of decades in the flowering of several research centres and institutes covering issues ranging from soil chemistry to soil genesis, classification, and map**, from soil microbiology to soil hydrology, with long-term finalised projects and research initiatives. Over the years, following major reorganisation of CNR structure, the term “soil” disappeared from the name of the research institutes, following a worldwide trend. CNR soil scientists are currently scattered over several Research Institutes and two departments, with an evident fragmentation of research efforts, which nevertheless resulted in a spread of soil science in many other sectors, favoured by the multidisciplinary nature of the CNR. A few examples of CNR research achievements in the main branches of soil science such as biology, ecology, physics, chemistry, erosion, and pedology are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 37.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the first meeting of the Committee's Executive Board, held in February 1929, it was decided to split the Committee into six sections: (1) soil and fertilisers, led by Giovanni Raineri, (2) agrarian industries, led by Giuseppe Tommasi, (3) agrarian biology, led by Giovanni Tallarico, (4) agrarian technology, led by Emanuele De Cillis, (5) animal husbandry, led by Nello Fotticchia, and (6) statistical economics and agrarian legislation, led by Arrigo Serpieri. The structure and subdivision into sections was initially approved by the Ministry of National Education, but later, at the proposal of Peglion, Tassinari, and Marozzi, it was decided to suppress the sixth section.

  2. 2.

    By Decree of the President of the Council of Ministers of 2 August 1963 (published in the ordinary supplement to the Official Gazette of 6 August 1963, no. 209), ten National Advisory Committees were set up within the National Research Council with the following names and competences (1) National Committee for Mathematical Sciences; (2) National Committee for Physical Sciences; (3) National Committee for Chemical Sciences; (4) National Committee for Biological and Medical Sciences; (5) National Committee for Geological and Mineral Sciences; (6) National Committee for Agricultural Sciences; (7) National Committee for Engineering and Architectural Sciences; (8) National Committee for Historical, Philosophical and Philological Sciences; (9) National Committee for Legal and Political Sciences; (10) National Committee for Economic, Sociological and Statistical Sciences.

  3. 3.

    Luigi Cavazza, full professor of Agronomy at the University of Bologna, was always interested in soil. He is credited with having made a fundamental contribution to soil hydrology studies and its promotion in Italian universities. He is one of the pioneers of the study of soil physics and hydrology in particular, author of the only book in italian on soil physics.

  4. 4.

    https://ejpsoil.eu.

  5. 5.

    https://soilhealthbenchmarks.eu/.

  6. 6.

    https://www.newlife4drylands.eu/language/en/.

  7. 7.

    https://www.landsupport.eu/.

  8. 8.

    https://www.sos4life.it/en/.

  9. 9.

    https://www.cbqf.esb.ucp.pt/en/ReCrop.

References

  • Abdallah, A., Ugolini, F., Baronti, S., Maienza, A., Camilli, F., Bonora, L., & Ungaro, F. (2019). The potential of recycling wool residues as an amendment for enhancing the physical and hydraulic properties of a sandy loam soil. International Journal of Recycling of Organic Waste in Agriculture, 8, 131–143. https://doi.org/10.1007/s40093-019-0283-5

    Article  Google Scholar 

  • Agnelli, A., Corti, G., Massaccesi, L., Ventura, S., & D'Acqui, L. P. (2021). Impact of biological crusts on soil formation in polar ecosystems. Geoderma, 401(art. no. 115340). https://doi.org/10.1016/j.geoderma.2021.115340

  • Agostini, M., Mondini, A. C., Torri, D., & Rossi, M. (2022). Modelling seasonal variation of gully erosion at the catchment scale. Earth Surface Processes and Landforms, 47(2), 436–458. https://doi.org/10.1002/esp.5259

    Article  Google Scholar 

  • Aranguren, R., Voyron, S., Ungaro, F., Cañón, J., & Lumini, E. (2023). Metabarcoding reveals impact of different land uses on fungal diversity in the South-Eastern Region of Antioquia, Colombia. Plants, 12, 1126. https://doi.org/10.3390/plants12051126

    Article  CAS  Google Scholar 

  • Avio, L., Njeru, E. M., Oehl, F., Turrini, A., Bocci, G., Barberi, P., Giovannetti, M., & Sbrana, C. (2020). Small-scale soil heterogeneity affects the distribution of arbuscular mycorrhizal fungal species in a hot-spot field in a Mediterranean site. Applied Soil Ecology, 154, 103631. https://doi.org/10.1016/j.apsoil.2020.103631

    Article  Google Scholar 

  • Bancheri, M., Fusco, F., Dalla Torre, D., Terribile, F., Manna, P., Langella, G., & Basile, A. (2022). The pesticide fate tool for groundwater vulnerability assessment within the geospatial decision support system LandSupport. Science of the Total Environment, 807, 150793. https://doi.org/10.1016/j.scitotenv.2021.150793

    Article  CAS  Google Scholar 

  • Barca, E., Castrignanò, A., Buttafuoco, G., De Benedetto, D., Passarella, G. (2015). Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing. Environmental Monitoring and Assessment, 187(7). https://doi.org/10.1007/s10661-015-4570-y

  • Baronti, S., Magno, R., Maienza, A., Montagnoli, A., Ungaro, F., & Vaccari, F. P. (2022). Long term effect of biochar on soil plant water relation and fine roots: Results after 10 years of vineyard experiment. Science of the Total Environment, 851, 158225. https://doi.org/10.1016/j.scitotenv.2022.158225

    Article  CAS  Google Scholar 

  • Basile, A., Coppola, A., De Mascellis, R., & Randazzo, L. (2006). Scaling approach to deduce field unsaturated hydraulic properties and behavior from laboratory measurements on small cores. Vadose Zone Journal, 5, 1005–1016. https://doi.org/10.2136/vzj2005.0128

    Article  Google Scholar 

  • Basile, A., Buttafuoco, G., Mele, G., & Tedeschi, A. (2012). Complementary techniques to assess physical properties of a fine soil irrigated with saline water. Environmental Earth Sciences, 66(7), 1797–1807. https://doi.org/10.1007/s12665-011-1404-2

    Article  Google Scholar 

  • Basile, A., Coppola A, De Mascellis, R., Mele, G., & Terribile, F. (2007). A comparative analysis of the pore system in COST 622 Volcanic Soils by means of water retention measurements and image analysis. In Soils of volcanic regions in Europe (pp. 493–513). ISBN 9783540487104

    Google Scholar 

  • Baveye, P., Jacobson, A. R., Allaire, S. E., Tandarich, J. P., & Bryant, R. R. (2006). Whither goes soil science in the United States and Canada? Soil Science, 171(2006), 501–518. https://doi.org/10.1097/01.ss.0000228032.26905.a9

    Article  CAS  Google Scholar 

  • Biddoccu, M., Guzmán, G., Capello, G. T., Thielke, P., Strauss, S., Winter, J. G., Zaller, A., Nicolai, D., Cluzeau, D., Popescu, C., Bunea, A., Hoble Cavallo, E., & Gómez, J. A. (2020). Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. International Soil and Water Conservation Research, 8(4), 337–353. https://doi.org/10.1016/j.iswcr.2020.07.003

    Article  Google Scholar 

  • Bonfante, A., Basile, A., Langella, G., Manna, P., & Terribile, F. (2011). A physically oriented approach to analysis and map** of terroirs. Geoderma, 167–168, 103–117. https://doi.org/10.1016/j.geoderma.2011.08.004

    Article  Google Scholar 

  • Bonfante, A., Agrillo, A., Albrizio, R., Basile, A., Buonomo, R., De Mascellis, R., Gambuti, A., Giorio, P., Guida, G., Langella, G., Manna, P., Minieri, L., Moio, L., Siani, T., & Terribile, F. (2015). Functional homogeneous zones (fHZs) in viticultural zoning procedure: An Italian case study on Aglianico vine. The Soil, 1(1), 427–441. https://doi.org/10.5194/soil-1-427-2015

    Article  CAS  Google Scholar 

  • Bonfante, A., Basile, A., & Bouma, J. (2020). Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. The Soil, 6(2), 453–466. https://doi.org/10.5194/soil-6-453-2020

    Article  Google Scholar 

  • Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. CATENA, 75, 268–277.https://doi.org/10.1016/J.Catena.2008.07.007

  • Brescia, F., Sillo, F., Franchi, E., Pietrini, I., Montesano, V., Marino, G., et al. (2023). The ‘microbiome counterattack’: Insights on the soil and root-associated microbiome in diverse chickpea and lentil genotypes after an erratic rainfall event. Environmental Microbiology Reports, 15(6), 1–25. https://doi.org/10.1111/1758-2229.13167

    Article  Google Scholar 

  • Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2010). Spatial‐temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46(2).

    Google Scholar 

  • Buttafuoco, G., Castrignano, A., Busoni, E., & Dimase, A. C. (2005). Studying the spatial structure evolution of soil water content using multivariate geostatistics. Journal of Hydrology, 311(1–4), 202–218. https://doi.org/10.1016/j.jhydrol.2005.01.018

    Article  Google Scholar 

  • Buttafuoco, G., Conforti, M., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2012). Assessing spatial uncertainty in map** soil erodibility factor using geostatistical stochastic simulation. Environmental Earth Sciences, 66(4), 1111–1125. https://doi.org/10.1007/s12665-011-1317-0

    Article  Google Scholar 

  • Buttafuoco, G., Castrignanò, A., Cucci, G., Lacolla, G., & Lucà, F. (2017). Geostatistical modelling of within-field soil and yield variability for management zones delineation: A case study in a durum wheat field. Precision Agriculture, 18, 37–58. https://doi.org/10.1007/s11119-016-9462-9

    Article  Google Scholar 

  • Buttafuoco, G., Quarto, R., Quarto, F., Conforti, M., Venezia, A., Vitti, C., & Castrignanò, A. (2021). Taking into account change of support when merging heterogeneous spatial data for field partition. Precision Agriculture, 22(2), 586–607. https://doi.org/10.1007/s11119-020-09781-9

    Article  Google Scholar 

  • Buttafuoco, G., Tarvainen, T., Jarva, J., Guagliardi, I. (2016). Spatial variability and trigger values of arsenic in the surface urban soils of the cities of Tampere and Lahti, Finland. Environmental Earth Sciences, 75(10). https://doi.org/10.1007/s12665-016-5707-1

  • Cahill, A. T., Ungaro, F., Parlange, M. B., Mata, M., & Nielsen, D. R. (1999). Combined spatial and Kalman filter estimation of optimal soil hydraulic properties. Water Resources Research, 35(4), 1079–1088. https://doi.org/10.1029/1998WR900121

    Article  Google Scholar 

  • Calzolari, C., & Ungaro, F. (1998). Geomorphic features of a badland (biancane) area (Central Italy): Characterization, distribution and quantitative spatial analysis. CATENA, 31, 237–256. https://doi.org/10.1016/S0341-8162(97)00046-5

    Article  Google Scholar 

  • Calzolari, C., & Ungaro, F. (2012). Predicting shallow water table depth at regional scale from rainfall and soil data. Journal of Hydrology, 414–415, 374–387. https://doi.org/10.1016/j.jhydrol.2011.11.008

    Article  Google Scholar 

  • Calzolari, C., Ungaro, F., Filippi, N., Guermandi, M., Malucelli, F., Marchi, N., Staffilani, F., & Tarocco, P. (2016). A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma. https://doi.org/10.1016/j.geoderma.2015.07.013

    Article  Google Scholar 

  • Calzolari, C., Tarocco, P., Lombardo, N., Marchi, N., & Ungaro, F. (2020). Assessing soil ecosystem services in urban and peri-urban areas: From urban soils survey to providing support tool for urban planning. Land Use Policy, 99, 105037. https://doi.org/10.1016/j.landusepol.2020.105037

    Article  Google Scholar 

  • Calzolari, C., Ungaro, F., & Vacca, A. (2021). Effectiveness of a soil map** geomatic approach to predict the spatial distribution of soil types and their properties. CATENA, 196, 104818. https://doi.org/10.1016/j.catena.2020.104818

    Article  Google Scholar 

  • Canini, F., Geml, J., D’Acqui, L. P., Selbmann, L., Onofri, S., Ventura, S., & Zucconi, L. (2020). Exchangeable cations and pH drive diversity and functionality of fungal communities in biological soil crusts from coastal sites of Victoria Land, Antarctica. Fungal Ecology, 45, 100923. https://doi.org/10.1016/j.funeco.2020.100923

    Article  Google Scholar 

  • Canini, F., Geml, J., D’Acqui, L. P., Buzzini, P., Turchetti, B., Onofri, S., Ventura, S., & Zucconi, L. (2021). Fungal diversity and functionality are driven by soil texture in Taylor Valley, Antarctica. Fungal Ecology, 45, 101041. https://doi.org/10.1016/j.funeco.2021.101041

    Article  Google Scholar 

  • Caputo, M. C., & Nimmo, J. R. (2005). Quasi‐steady centrifuge method for unsaturated hydraulic properties. Water Resources Research, 41(11).

    Google Scholar 

  • Cassi, F., Calzolari, C., Certini, G., Costantini, E. A. C., Gardin, L., Pagliai, M., & Pellegrini, S. (2024) The development of soil science in Tuscany. In C. Dazzi et al. (eds.), Soil Science in Italy, (pp. XX_XX). https://doi.org/10.1007/978-3-031-52744-9_23

  • Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans, B., Vreys, K., Brell, M., & van Wesemael, B. (2019). Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 267–282. https://doi.org/10.1016/J.ISPRSJPRS.2018.11.026

    Article  Google Scholar 

  • Castrignanò, A., & Buttafuoco, G. (2004). Geostatistical stochastic simulation of soil water content in a forested area of South Italy. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2003.11.002

    Article  Google Scholar 

  • Castrignanò, A., Buttafuoco, G., & Puddu, R. (2008). Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy). Precision Agriculture, 9(1–2), 17–31. https://doi.org/10.1007/s11119-008-9054-4

    Article  Google Scholar 

  • Castrignanò, A., Buttafuoco, G., & Comolli, R. (2011). Using digital elevation model to improve soil pH prediction in an alpine doline. Pedosphere, 21(2), 259–270. https://doi.org/10.1016/S1002-0160(11)60126-4

    Article  Google Scholar 

  • Castrignanò, A., Buttafuoco, G., Quarto, D., Parisi, P., Viscarra Rossel, R. A., Terribile, F., Langella, G., & Venezia, A. (2018). A geostatistical sensor data fusion approach for delineating homogeneous management zones in precision agriculture. CATENA, 167(2018), 293–304. https://doi.org/10.1016/j.catena.2018.05.011

    Article  Google Scholar 

  • Cavazza, L. (2001). L’evoluzione del GRU.S.I. nel tempo. Rivista di Irrigazione e Drenaggio, 48(4), 6–10.

    Google Scholar 

  • Ceccanti, B., Alcaniz-Baldellou, J. M., Gispert-Negrell, M., & Gassiot-Matas, M. (1986). Characterization of organic matter from two different soils by pyrolysis-gas chromatography and isoelectric focusing. Soil Science, 142(2), 83–90.

    Article  CAS  Google Scholar 

  • Chialva, M., Ghignone, S., Cozzi, P., Lazzari, B., Bonfante, P., Abbruscato, P., & Lumini, E. (2020). Water management and phenology influence the root-associated rice field microbiota. Soil Science, 96(9), 146. https://doi.org/10.1093/femsec/fiaa146

    Article  CAS  Google Scholar 

  • Chiapello, M., Zampieri, E., Mello, A. (2020). A small effort for researchers, a big gain for soil metaproteomics. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.00088

  • Conforti, M., & Buttafuoco, G. (2017). Assessing space–time variations of denudation processes and related soil loss from 1955 to 2016 in southern Italy (Calabria region). Environmental Earth Sciences, 76(13), 457. https://doi.org/10.1007/s12665-017-6786-3

    Article  Google Scholar 

  • Coppola, A., Basile, A., Wang, X., Comegna, V., Tedeschi, A, Mele, G., Comegna, A. (2011). Hydrological behavior of microbiotic crusts on sand dunes: example from NW China comparing infiltration in crusted and crust-removed soil. Soil, Tillage Research, 117, 34–43. 102136/vzj2015020021

    Google Scholar 

  • Coppola, A., Comegna, A., Dragonetti, G., Gerke, H. H., Basile, A. (2015). Simulated preferential water flow and solute transport in shrinking soils. Vadose Zone Journal, 14(9), 22.https://doi.org/10.102136/vzj2015020021

  • D’Acqui, L. P., Churchman, G. J., Janik, L. J., Ristori, G. G., & Weissmann, D. A. (1999). Effect of organic matter removal by low-temperature ashing on dispersion of undisturbed aggregates from a tropical crusting soil. Geoderma, 93, 311–324. https://doi.org/10.1016/S0016-7061(99)00073-7

    Article  Google Scholar 

  • D’Acqui, L. P., Pucci, A., & Janik, L. J. (2010). Soil properties prediction of western Mediterranean islands with similar climatic environments by means of mid-infrared diffuse reflectance spectroscopy. European Journal of Soil Science, 61, 865–876.

    Article  Google Scholar 

  • D’Acqui, L. P., Bonetti, A., Pini, R., & Certini, G. (2017). Physical protection of organic matter in minesoils assessed by low-temperature ashing (LTA). Geoderma, 288, 120–129. https://doi.org/10.1016/j.geoderma.2016.11.009

    Article  CAS  Google Scholar 

  • Dimase, A. C. (1980) Carta di semidettaglio dei suoli del comune di Montemurro (Potenza). Scala 1:25.000. CNR - Centro di Studio per la Genesi Classificazione e Cartografia del Suolo, Geographicus.

    Google Scholar 

  • Dimase, A. C. (1983). Il rilevamento dei suoli dell’azienda agricola “Il Monte”. Un esempio di cartografia di dettaglio per il reperimento di dati per ricerche di valutazioni a scopi agricoli. In: “Risultati sperimentali per la valutazione dei suoli agricoli e forestali in Toscana”. Progetto finalizzato “Conservazione del suolo” (pp. 61–101) Centro di studio per la Genesi, Cartografia e Classificazione del Suolo, C.N.R.

    Google Scholar 

  • Farzamian, M., Autovino, D., Basile, A., De Mascellis, R., Dragonetti, G., Monteiro Santos, F., & Coppola, A. (2021). Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling. Hydrology and Earth System Sciences, 25(3), 1509–1527. https://doi.org/10.5194/hess-25-1509-2021

    Article  Google Scholar 

  • Fontana, A. (1999). Funghi, piante e suolo: quarant'anni di ricerche del Centro di studio sulla micologia del terreno nel centenario della nascita del suo fondatore Beniamino Peyronel, con l’elenco delle pubblicazioni. In La Facoltà di scienze matematiche, fisiche e naturali di Torino, 1848-1998, II, I docenti, Torino 1999 (pp. 145–150)

    Google Scholar 

  • Franchi, E., Cosmina, P., Pedron, F., Rosellini, I., Barbafieri, M., Petruzzelli, G., & Vocciante, M. (2019). Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Science of the Total Environment, 655, 328–336. https://doi.org/10.1016/j.scitotenv.2018.11.242

    Article  CAS  Google Scholar 

  • Fusi, P., Ristori, G. G., Calamai, L., & Stotzky, G. (1989). Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biology and Biochemistry, 21(7), 911. https://doi.org/10.1016/0038-0717(89)90080-1

    Article  CAS  Google Scholar 

  • Gargiulo, L., Mele, G., & Terribile, F. (2016). Effect of rock fragments on soil porosity: A laboratory experiment with two physically degraded soils. European Journal of Soil Science, 67(5), 597–604.

    Article  Google Scholar 

  • Giannetti, R. (2001). Il CNR e Ie, politiche per la ricerca e l‘innovazione industriale. In P. Simili (Ed.), Per una storia del Consiglio Nazionale delle Ricerche.

    Google Scholar 

  • Giannini, V., Peruzzi, E., Masciandaro, G., Doni, S., Macci, C., Bonari, E., & Silvestri, N. (2020). Comparison among different rewetting strategies of degraded agricultural peaty soils: Short-term effects on chemical properties and ecoenzymatic activities. Agronomy, 10(8), 1084. https://doi.org/10.3390/agronomy10081084

    Article  CAS  Google Scholar 

  • Giordano, R., & Liersch, S. (2012). A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring. Environmental Modelling, Software, 36, 49–63. https://doi.org/10.1016/j.envsoft.2011.09.004

    Article  Google Scholar 

  • Giovannetti, M. (2021). The Faculty of Agriculture Science in the University of Pisa: 180 years of scientific excellence. Agrochimica (Vol. 65, Special Issue). https://doi.org/10.12871/00021857202201

  • Giovannini, G., & Lucchesi, S. (1984). Differential thermal analysis and infrared investigations on soil hydrophobic substances. Soil Science, 137(6), 457–463. https://doi.org/10.1097/00010694-198406000-00011

    Article  CAS  Google Scholar 

  • Grifoni, M., Rosellini, I., Angelini, P., Petruzzelli, G., & Pezzarossa, B. (2020). The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environmental Pollution, Part A, 265(art. no. 114950). https://doi.org/10.1016/j.envpol.2020.114950

  • Lacava, T., Cuomo, V., Di Leo, E. V., Pergola, N., Romano, F., & Tramutoli, V. (2005). Improving soil wetness variations monitoring from passive microwave satellite data: The case of April 2000 Hungary flood. Remote Sensing of Environment, 96(2), 135–148. https://doi.org/10.1016/j.rse.2005.01.015

    Article  Google Scholar 

  • Leone, A. P., Viscarra-Rossel, R., Amenta, P., & Buondonno, A. (2012). Prediction of soil properties with PLSR and vis-NIR spectroscopy: Application to mediterranean soils from Southern Italy. Current Analytical Chemistry, 8(2), 283–299. https://doi.org/10.2174/157341112800392571

    Article  CAS  Google Scholar 

  • Lucà, F., Buttafuoco, G., Robustelli, G., & Malafronte, A. (2014). Spatial modelling and uncertainty assessment of pyroclastic cover thickness in the Sorrento Peninsula. Environmental Earth Sciences, 72(9), 3353–3367. https://doi.org/10.1007/s12665-014-3241-6

    Article  Google Scholar 

  • Lumini, E., Orgiazzi, A., Borriello, R., Bonfante, P., & Bianciotto, V. (2010). Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environmental Microbiology, 12(8), 2165–2179. https://doi.org/10.1111/j.1462-2920.2009.02099.x

    Article  CAS  Google Scholar 

  • Manna, P., Basile, A., Bonfante, A., De Mascellis, R., & Terribile, F. (2009). Comparative Land Evaluation approaches: An itinerary from FAO framework to simulation modelling. Geoderma, 150(3–4), 367–378.

    Article  Google Scholar 

  • Manna, P., Basile, A., Bonfante, A., D’Antonio, A., De Michele, C., Iamarino, M., Langella, G., Mileti, F. A., Pileri, P., Vingiani, S., & Terribile, F. (2017). Soil Sealing: quantifying impacts on soil functions by a geospatial decision support system. Land Degradation, Development, 28(8), 2513–2526. https://doi.org/10.1002/ldr.2802

    Article  Google Scholar 

  • Mello, A., & Zampieri, E. (2017). Who is out there? What are they doing? Application of metagenomics and metaproteomics to reveal soil functioning. Italian Journal of Mycology, 46, 1–7. https://doi.org/10.6092/issn.2531-7342/6647

    Article  Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., & Styczen, M. E. (1998). The European soil erosion model (EUROSEM): A process-based approach for predicting soil loss from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3c527::AID-ESP868%3e3.0.CO;2-5

    Article  Google Scholar 

  • Muccifora, S., Castillo-Michel, H., Barbieri, F., Bellani, L., Ruffini Castiglione, M., Spanò, C., Pradas del Real, A. E., Giorgetti, L., & Tassi, E. L. (2021). Synchrotron radiation spectroscopy and transmission electron microscopy techniques to evaluate TiO2 NPs incorporation, speciation, and impact on root cells ultrastructure of Pisum sativum L. plants. Nanomaterials, 11, 921. https://doi.org/10.3390/nano11040921

    Article  CAS  Google Scholar 

  • Nemore, F. (2014). La modernizzazione agraria nelle carte del Comitato Agricoltura del CNR. Il Mondo degli Archivi – STUDI A. II - Settembre 2014. Available at http://mda2012-16.ilmondodegliarchivi.org/index.php/studi/item/394-la-modernizzazione-agraria-nelle-carte-del-comitato-agricoltura-del-cnr

  • Nepote Valentin, D., Voyron, S., Soteras, F., Iriarte, H. J., Giovannini, A., Lumini, E., & Lugo, M. A. (2023). Modeling geographic distribution of arbuscular mycorrhizal fungi from molecular evidence in soils of Argentinean Puna using a maximum entropy approach. PeerJ, 11, e14651. https://doi.org/10.7717/peerj.14651

    Article  CAS  Google Scholar 

  • Neri, L., Sillo, F., Zampieri, E., Lumini, E., Marturano, G., Degli Esposti, C., Petruzzelli, G., Gioli, B., Zaldei, A., Baraldi, R., & Balestrini, R. (2023). A combined analysis based on microbial communities and volatile organic compounds as a tool to study soil quality in an urban environment. Pedosphere, 33(4), 670–675. https://doi.org/10.1016/j.pedsph.2023.01.013

    Article  CAS  Google Scholar 

  • Orgiazzi, A., Lumini, E., Nilsson, R. H., Girlanda, M., Vizzini, A., Bonfante, P., & Bianciotto, V. (2012). Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE, 7(4), e34847. https://doi.org/10.1371/journal.pone.003484

    Article  CAS  Google Scholar 

  • Orgiazzi, A., Bianciotto, V., Bonfante, P., Daghino, S., Ghignone, S., Lazzari, A., Lumini, E., Mello, A., Napoli, C., Perotto, S., Vizzini, A., Bagella, S., Murat, C., & Girlanda, M. (2013). 454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity 5(1), 73–98. https://doi.org/10.3390/d5010073

  • Pagliai, M., Barberis, E., Costantini, E. A. C., Dazzi, C., & Gianfreda, L. (2024). From the 1980s to the 2000s: The golden Years of the Italian soil science. In C. Dazzi et al. (eds.), Soil Science in Italy, (pp. XX_XX). https://doi.org/10.1007/978-3-031-52744-9_5

  • Pagliai, M., & De Nobili. M. (1993). Relationships between soil porosity, root development and soil enzyme activity in cultivated soils. In Soil structure/soil biota interrelationships (pp. 243–256). Elsevier.

    Google Scholar 

  • Pauwels, V. R., Balenzano, A., Satalino, G., Skriver, H., Verhoest, N. E., & Mattia, F. (2009). Optimization of soil hydraulic model parameters using synthetic aperture radar data: An integrated multidisciplinary approach. IEEE Transactions on Geoscience and Remote Sensing, 47(2), 455–467. https://doi.org/10.1109/TGRS.2008.2007849

    Article  Google Scholar 

  • Petruzzelli,. (1989). Recycling wastes in agriculture: Heavy metal bioavailability. Agriculture, Ecosystems and Environment, 27(1–4), 493–503. https://doi.org/10.1016/0167-8809(89)90110-2

    Article  CAS  Google Scholar 

  • Pini, R. (1989). Guidi G (1989) Determination of soil microaggregates with laser light scattering. Communication in Soil Science and Plant Analysis, 20(19–2), 45–59. https://doi.org/10.1080/00103628909368067

    Article  Google Scholar 

  • Pistocchi, A., Calzolari, C., Malucelli, F., & Ungaro F. (2015). Soil sealing and flood risks in the plains of Emilia-Romagna, Italy. Journal of Hydrology 4(B), 398–409. https://doi.org/10.1016/j.ejrh.2015.06.021

  • Sanesi, G. (1977). I Suoli del Bacino dei Torrenti Diaterna e Lineamenti Pedologici del Mugello e dell'alta valle del Santerno, (Firenze). In Progetto Finalizzato Conservazione del Suolo Sottoprogetto Dinamica dei Versanti. Pubblicazione no. 12. (+ maps, scale 1: 25 000) Centro di Studio per la Genesi, Classificazione e Cartografia del Suolo.

    Google Scholar 

  • Simili, R., & Paoloni. G. (2001). Per una storia del Consiglio Nazionale delle Ricerche.

    Google Scholar 

  • Terribile, F., Coppola, A., Langella, G., Martina, M., & Basile, A. (2011). Potential and limitations of using soil map** information to understand landscape hydrology. Hydrology and Earth System Sciences, 15, 3895–3933. https://doi.org/10.5194/hess-15-3895-2011

    Article  Google Scholar 

  • Torri, D., Sfalanga, M., & Del Sette, M. (1987a). Splash detachment: Runoff depth and soil cohesion. CATENA, 14, 149–155.https://doi.org/10.1016/S0341-8162(87)80013-9

  • Torri, D., Sfalanga, M., & Chisci, G. (1987b). Threshold conditions for incipient rilling. CATENA Suppl., 8, 97–105.

    Google Scholar 

  • Torri, D., Poesen, J., Monaci, F., & Busoni, E. (1994). Rock fragment content and fine soil bulk density. CATENA, 23(1–2), 65–71. https://doi.org/10.1016/0341-8162(94)90053-1

    Article  Google Scholar 

  • Torri, D., Calzolari, C., & Rodolfi, G. (2000). Badlands in changing environment: An introduction. CATENA, 40, 119–125. https://doi.org/10.1016/S0341-8162(00)00119-3

    Article  Google Scholar 

  • Turrini, A., Sbrana, C., & Giovannetti, M. (2015). Belowground environmental effects of transgenic crops: A soil microbial perspective. Research in Microbiology, 166(3), 121–131. https://doi.org/10.1016/j.resmic.2015.02.006

    Article  Google Scholar 

  • Ungaro, F., Calzolari, C., & Busoni, E. (2005). Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of North Italy: Water retention properties. Geoderma, 124(3–4), 293–317. https://doi.org/10.1016/j.geoderma.2004.05.007

    Article  Google Scholar 

  • Ungaro, F., Staffilani, F., & Tarocco, P. (2010). Assessing and map** topsoil organic carbon stock at regional scale: A scorpan kriging approach conditional on soil map delineations and land use. Land Degradation, Development, 21(6), 565–581. https://doi.org/10.1002/ldr.998

    Article  Google Scholar 

  • Ungaro, F., Calzolari, C., Pistocchi, A., & Malucelli, F. (2014). Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: A hydropedological approach. Journal of Hydrology and Hydromechanics, 62(1), 33. https://doi.org/10.2478/johh-2014-0005

    Article  Google Scholar 

  • Varanini, Z., Alpi, A. (2010). La ricerca scientifica nelle Facoltà di Agraria: problemi strutturali e di finanziamento. “I Quaderni dei Georgofili”, 1, 29–39. https://www.georgofili.net/articoli/scheda/2488

  • Velde, B., Moreau, E., & Terribile, F. (1996). Pore networks in an Italian Vertisol: Quantitative characterisation by two dimensional image analysis. Geoderma, 72(3–4), 271–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Basile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basile, A., Buttafuoco, G., Calzolari, C., D’Acqui, L.P., Lumini, E., Ungaro, F. (2024). CNR’s Contribution to the Advancement of Soil Science in Italy. In: Dazzi, C., Benedetti, A., Corti, G., Costantini, E.A.C. (eds) Soil Science in Italy. Springer, Cham. https://doi.org/10.1007/978-3-031-52744-9_29

Download citation

Publish with us

Policies and ethics

Navigation