Scale-Aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning

  • Chapter
  • First Online:
Smart Big Data in Digital Agriculture Applications

Abstract

Monitoring the development of trees and accurately estimating the yield are important to improve orchard management and production. Growers need to estimate the yield of trees at the early stage to make smart decisions for field management. However, methods to predict the yield at the individual tree level are currently not available due to the complexity and variability of each tree. This study aimed to evaluate the performance of an unmanned aerial vehicle (UAV)-based remote sensing system and machine learning (ML) approaches for a tree-level pomegranate yield estimation. Lightweight sensors, such as the multispectral camera, were mounted on the UAV platform to acquire high-resolution images. Eight characteristics were extracted, including the normalized difference vegetation index (NDVI), the green normalized vegetation index (GNDVI), the RedEdge normalized difference vegetation index (NDVIre), RedEdge triangulated vegetation index (RTVIcore), individual tree canopy size, the modified triangular vegetation index (MTVI2), the chlorophyll index-green (CIg), and the chlorophyll index-rededge (CIre). First, direct correlations were made and the correlation coefficient (R\({ }^2\)) was determined between these vegetation indices and tree yield. Then, machine learning approaches were applied with the extracted features to predict the yield at the individual tree level. The results showed that the decision tree classifier had the best prediction performance, with an accuracy of 85%. The study demonstrated the potential of using UAV-based remote sensing methods, coupled with ML algorithms, for estimating the pomegranate yield. Predicting the yield at the individual tree level will enable stakeholders to manage the orchard on different scales, thus improving field management efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Dalezios, N., Domenikiotis, C., Loukas, A., Tzortzios, S., Kalaitzidis, C.: Cotton yield estimation based on NOAA/AVHRR produced NDVI. Phys. Chem. Earth B Hydrol. Oceans Atmos. 26(3), 247–251 (2001)

    Article  Google Scholar 

  3. Din, M., Zheng, W., Rashid, M., Wang, S., Shi, Z.: Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L at diverse phenological stages. Front. Plant Sci. 8, 820 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Duan, B., Fang, S., Gong, Y., Peng, Y., Wu, X., Zhu, R.: Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone. Field Crops Res. 267, 108,148 (2021)

    Article  Google Scholar 

  5. Duan, B., Fang, S., Zhu, R., Wu, X., Wang, S., Gong, Y., Peng, Y.: Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis. Front. Plant Sci. 10, 204 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feng, A., Zhang, M., Sudduth, K.A., Vories, E.D., Zhou, J.: Cotton yield estimation from UAV-based plant height. Trans. ASABE 62(2), 393–404 (2019)

    Article  Google Scholar 

  7. Feng, A., Zhou, J., Vories, E.D., Sudduth, K.A., Zhang, M.: Yield estimation in cotton using UAV-based multi-sensor imagery. Biosyst. Eng. 193, 101–114 (2020)

    Article  Google Scholar 

  8. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol (2019)

    Google Scholar 

  9. Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood components analysis. Adv. Neural Inf. Process. Syst. 17, 513–520 (2004)

    Google Scholar 

  10. Gong, Y., Duan, B., Fang, S., Zhu, R., Wu, X., Ma, Y., Peng, Y.: Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 14(1), 1–14 (2018)

    Article  Google Scholar 

  11. Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90(3), 337–352 (2004)

    Article  Google Scholar 

  12. Holland, D., Hatib, K., Bar-Ya’akov, I., et al.: 2 pomegranate: botany, horticulture, breeding. Horticultural Rev. 35(2), 127–191 (2009)

    Article  Google Scholar 

  13. Khosravi, I., Alavipanah, S.K.: A random forest-based framework for crop map** using temporal, spectral, textural and polarimetric observations. Int. J. Remote Sens. 40(18), 7221–7251 (2019)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. Preprint (2014). ar**v:1412.6980

    Google Scholar 

  15. Lansky, E.P., Newman, R.A.: Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 109(2), 177–206 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Loh, W.Y.: Classification and regression trees. Wiley Interdiscipl. Rev. Data Min. Knowl. Disc. 1(1), 14–23 (2011)

    Article  Google Scholar 

  17. Magney, T.S., Eitel, J.U., Vierling, L.A.: Map** wheat nitrogen uptake from rapideye vegetation indices. Precis. Agricult. 18(4), 429–451 (2017)

    Article  Google Scholar 

  18. Narin, O.G., Abdikan, S.: Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images. Geocarto Int., 1–15 (2020)

    Google Scholar 

  19. Niu, H., Hollenbeck, D., Zhao, T., Wang, D., Chen, Y.: Evapotranspiration estimation with small UAVs in precision agriculture. Sensors 20(22), 6427 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Niu, H., Wang, D., Chen, Y.: Estimating actual crop evapotranspiration using deep stochastic configuration networks model and UAV-based crop coefficients in a pomegranate orchard. In: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenoty** V. International Society for Optics and Photonics (2020)

    Google Scholar 

  21. Niu, H., Wang, D., Chen, Y.: Estimating crop coefficients using linear and deep stochastic configuration networks models and UAV-based normalized difference vegetation index (NDVI). In: Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1485–1490. IEEE (2020)

    Google Scholar 

  22. Niu, H., Zhao, T., Wei, J., Wang, D., Chen, Y.: Reliable tree-level evapotranspiration estimation of pomegranate trees using lysimeter and UAV multispectral imagery. In: 2021 IEEE Conference on Technologies for Sustainability (SusTech), pp. 1–6. IEEE (2021)

    Google Scholar 

  23. Peng, Y., Li, Y., Dai, C., Fang, S., Gong, Y., Wu, X., Zhu, R., Liu, K., et al.: Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agricult. Forest Meteorol. 271, 116–125 (2019)

    Article  Google Scholar 

  24. Ren, J., Chen, Z., Zhou, Q., Tang, H.: Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Observ. Geoinf. 10(4), 403–413 (2008)

    Google Scholar 

  25. Schwalbert, R.A., Amado, T.J., Nieto, L., Varela, S., Corassa, G.M., Horbe, T.A., Rice, C.W., Peralta, N.R., Ciampitti, I.A.: Forecasting maize yield at field scale based on high-resolution satellite imagery. Biosyst. Eng. 171, 179–192 (2018)

    Article  Google Scholar 

  26. Stateras, D., Kalivas, D.: Assessment of olive tree canopy characteristics and yield forecast model using high resolution UAV imagery. Agriculture 10(9), 385 (2020)

    Article  CAS  Google Scholar 

  27. Sumner, M.D., Elliott-Eller, M., Weidner, G., Daubenmier, J.J., Chew, M.H., Marlin, R., Raisin, C.J., Ornish, D.: Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am. J. Cardiol. 96(6), 810–814 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Swain, K.C., Thomson, S.J., Jayasuriya, H.P.: Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Trans. ASABE 53(1), 21–27 (2010)

    Article  Google Scholar 

  29. Turner, D., Lucieer, A., Malenovskỳ, Z., King, D.H., Robinson, S.A.: Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sens. 6(5), 4003–4024 (2014)

    Google Scholar 

  30. Wang, D., Ayars, J., Tirado-Corbala, R., Makus, D., Phene, C., Phene, R.: Water and nitrogen management of young and maturing pomegranate trees. In: III International Symposium on Pomegranate and Minor Mediterranean Fruits 1089, pp. 395–401 (2013)

    Google Scholar 

  31. Yang, Q., Shi, L., Han, J., Zha, Y., Zhu, P.: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 235, 142–153 (2019)

    Article  Google Scholar 

  32. Yang, W., Nigon, T., Hao, Z., Paiao, G.D., Fernández, F.G., Mulla, D., Yang, C.: Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agricult. 184, 106,092 (2021)

    Article  Google Scholar 

  33. Yawata, K., Yamamoto, T., Hashimoto, N., Ishida, R., Yoshikawa, H.: Mixed model estimation of rice yield based on NDVI and GNDVI using a satellite image. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, vol. 11149, p. 1114918. International Society for Optics and Photonics (2019)

    Google Scholar 

  34. Zaman, Q., Schumann, A., Percival, D., Gordon, R.: Estimation of wild blueberry fruit yield using digital color photography. Trans. ASABE 51(5), 1539–1544 (2008)

    Article  Google Scholar 

  35. Zhang, H., Wang, D., Ayars, J.E., Phene, C.J.: Biophysical response of young pomegranate trees to surface and sub-surface drip irrigation and deficit irrigation. Irrigat. Sci. 35(5), 425–435 (2017)

    Article  CAS  Google Scholar 

  36. Zhang, X., Toudeshki, A., Ehsani, R., Li, H., Zhang, W., Ma, R.: Yield estimation of citrus fruit using rapid image processing in natural background. Smart Agricult. Technol., 100027 (2021)

    Google Scholar 

  37. Zhang, Z., **, Y., Chen, B., Brown, P.: California almond yield prediction at the orchard level with a machine learning approach. Front. Plant Sci. 10, 809 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao, T., Doll, D., Chen, Y.: Better almond water stress monitoring using fractional-order moments of non-normalized difference vegetation index. In: 2017 ASABE Annual International Meeting, p. 1. American Society of Agricultural and Biological Engineers (2017)

    Google Scholar 

  39. Zhao, T., Wang, Z., Yang, Q., Chen, Y.: Melon yield prediction using small unmanned aerial vehicles. In: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenoty** II, vol. 10218, p. 1021808. International Society for Optics and Photonics (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niu, H., Chen, Y. (2024). Scale-Aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning. In: Smart Big Data in Digital Agriculture Applications. Agriculture Automation and Control. Springer, Cham. https://doi.org/10.1007/978-3-031-52645-9_10

Download citation

Publish with us

Policies and ethics

Navigation