Nitrogen-Containing Compounds

  • Chapter
  • First Online:
Secondary Metabolites in Plant Stress Adaptation

Abstract

Nitrogen-containing compounds include three main metabolic classes: alkaloids, cyanogenic glucosides and glucosinolates. Alkaloids show the most diversified structures among the secondary metabolites. This results in high chemotaxonomical values at low taxonomic levels. They are classified by combining precursor sources (amino acid or not) with the occurrence of nitrogen within heterocycle or chain (in the final product). This coupling results in three alkaloid classes including true alkaloids, protoalkaloids and pseudoalkaloids. Cyanogenic Glucosides are based on hydroxnitrile structures characterized by the occurrence of cyanide (CN) stabilized by a glycosyl group. Their hydrolysis (cyanogenesis) provides toxic hydrogen cyanide (H-CN) playing key defensive role against pathogen and herbivorous attacks. Glucosinolates contain nitrogen, glucosyl and sulfur. Their hydrolysis provides isothiocyanate (toxic against harmful biological organisms). Glucosinolates show limited botanical distribution and are particularly abundant in Brassicaceae and some other plant families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aniszewski T (2007) Alkaloids—secrets of life; alkaloid chemistry, biological significance, applications and ecological role. Elsevier, Amsterdam, p 335

    Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Kahn RA, Nielsen HN, Møller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36:393–405.

    Google Scholar 

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RN, Donald AM, Dawson GW, Hick AJ, Wallsgrove RM (1993) Aldoxime-forming microsomal enzyme systems involved in the biosynthesis of glucosinolates in oil seed rape leaves. Plant Physiol 102:1307–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi R, Negri A, Ronchi S, Palmieri S (2000) Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. FEBS Lett 467:296–298

    Article  CAS  PubMed  Google Scholar 

  • Bjarnholt N, Møller BL (2008) Hydroxynitrile glucosides. Phytochemistry 69:1947–1961

    Article  CAS  PubMed  Google Scholar 

  • Blažević I, Montaut S, Burčul F, Rollin P (2015) Glucosinolates: novel sources and biological potential. In: Mérillon J-M, Ramawat KG (eds) Glucosinolates, reference series in phytochemistry. Springer International Publishing, Switzerland, pp 1–58. https://doi.org/10.1007/978-3-319-26479-0_1-1

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Brown RT, Pratt SB, Richards P (2000) Enantiospecific synthesis of (–)-3-iso-19,20-dehydro-byohimbine from secologanin: a route to normal and pseudo stereoisomers of yohimbine. Tetrahedron Lett 41:5627–5630

    Article  CAS  Google Scholar 

  • Burow M, Muller R, Gershenzon J, Wittstock U (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 32:2333–2349

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Glaswischnig E, Jorgensen K, Naur P, Jorgensen B et al (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937

    Article  CAS  PubMed  Google Scholar 

  • Chen DL, Wang BW, Sun ZC, Yang JS, Xu XD, Ma GX (2020) Natural nitrogenous sesquiterpenoids and their bioactivity: a review. Molecules 25(2485):1–32

    Google Scholar 

  • Cicero AFG, Fogacci F, Di Micoli V, Angeloni C, Giovannini M, Borghi C (2023) Purine metabolism dysfunctions: experimental methods of detection and diagnostic potential. Int J Mol Sci 24(7027):1–14

    Google Scholar 

  • Clausen V, Frydenvang K, Koopmann R, Jørgensen LB, Abbiw DK et al (2002) Plant analysis by butterflies: occurrence of cyclopentenylglycines in passifloraceae, flacourtiaceae, and turneraceae and discovery of the novel nonproteinogenic amino acid 2-(3ʹ-cyclopentenyl)glycine in Rinorea. J Nat Prod 65:542–547

    Article  CAS  PubMed  Google Scholar 

  • Dalgaard L, Nawaz R, Sørensen H (1977) 3-methylthiopropylamine and (R)-3-methylsulphinylpropylamine in Iberis amara. Phytochemistry 16:931–932

    Article  CAS  Google Scholar 

  • Danyen SB, Boodia N, Ruggoo A (2009) Interaction effects between ascorbic acid and calcium chloride in minimizing browning of fresh-cut green banana slices. J Food Process Preserv 33:12–26

    Article  Google Scholar 

  • Deng WW, Ashihara H (2010) Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings. Plant Cell Physiol 51(12):2105–2118

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (2009) Alkaloids. In: Medicinal natural products: a biosynthetic approach. Wiley, pp 311–420

    Google Scholar 

  • Djerassi C, Kutney JP, Shamma M (1962) Alkaloid studies-XXXII: studies on Skytanthus acutus meyen. The structure of the monoterpenoid alkaloid skytanthine. Tetrahedron 18(1):183–188

    Google Scholar 

  • Du L, Lykkesfeldt J, Olsen CE, Halkier BA (1995) Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba (L.). Proc Natl Acad Sci North Am 92:12505–12509

    Article  CAS  Google Scholar 

  • Ettlinger MG, Kjxr A (1968) Sulfur compounds in plants. Recent Adv Phytochem 1:59–144

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Foo HL, Gronning LM, Goodenough L, Bones AM, Danielsen BE et al (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468:243–246

    Article  CAS  PubMed  Google Scholar 

  • Galletti S, Bernardi R, Leoni O, Rollin P, Palmieri S (2001) Preparation and biological activity of four epiprogoitrin myrosinase-derived products. J Agric Food Chem 49:471–476

    Article  CAS  PubMed  Google Scholar 

  • Gil V, MacLeod AJ (1980) The effects of pH on glucosinolate degradation by a thioglucoside glucohydrolase preparation. Phytochemistry 19:2547–2551

    Article  CAS  Google Scholar 

  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 65:155–185

    Article  CAS  PubMed  Google Scholar 

  • Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol 28:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Griffiths LA (1959) Detection and identification of the polyphenoloxidase substrate of the banana. Nature 184:58–59

    Article  CAS  PubMed  Google Scholar 

  • Grubb CD, Steffen A (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA (1999) Glucosinolates. In: Ikan R (ed) Naturally occurring glycosides. Wiley, Chichester, pp 193–223

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Hansen CH, Naur P, Mikkelsen MD, Wittstock U (2002) Biosynthesis and evolution of glucosinolates—the role of cytochromes P450. In: Romeo JT, Dixon RA (eds) Recent advances in phytochemistry—phytochemistry in the genomics and post-genomics eras. Pergamon, Oxford

    Google Scholar 

  • Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001a) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085

    Article  CAS  PubMed  Google Scholar 

  • Hansen CH, Du LC, Naur P, Olsen CE, Axelsen KB et al (2001b) CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem 276:24790–24796

    Article  CAS  PubMed  Google Scholar 

  • Hart NK, Johns SR, Lamberton JA (1967) (+)-9-Aza-l-methylbicyclo[3,3,1]nonan-3-one, a new alkaloid from Euphorbia atoto forst. Aust J Chem 20:561–563

    Article  CAS  Google Scholar 

  • Hogge LR, Reed DW, Underhill EW, Haughn GW (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography/mass spectrometry. J Chromatogr Sci 26:551–556

    Article  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PR, Møller BL, Hoj PB (1999) The UDP-glucose: p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor: isolation, cloning, heterologous expression, and substrate specificity. J Biol Chem 274:35483–35491

    Article  CAS  PubMed  Google Scholar 

  • Kahn RA, Bak S, Svendsen I, Halkier BA, Møller BL (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol 115:1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn RA, Fahrendorf T, Halkier BA, Møller BL (1999) Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys 363:9–18

    Article  CAS  PubMed  Google Scholar 

  • Koch BM, Sibbesenn O, Halkier BA, Svendsen I, Møller BL (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys 323:177–186

    Article  CAS  PubMed  Google Scholar 

  • Kuroki GW, Poulton JE (1987) Isolation and characterization ofmultiple forms of prunasin hydrolase from black cherry (Prunus serotina Ehrh.) seeds. Arch Biochem Biophys 255:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kuroki G, Lizotte PA, Poulton JE (1984) Catabolism of (R)-amygdalin and (R)-vicianin by partially purified β-glucosidases from Prunus serotina Ehrh. and Davallia trichomanoides. Z Naturforsch 39:232–239

    Article  Google Scholar 

  • Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Ison GE (2008) Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 101:101–111

    Article  CAS  PubMed  Google Scholar 

  • Lechtenberg M, Nahrstedt A, Fronczek FR (1996) Leucine-derived nitrile glucosides in the Rosaceae and their systematic significance. Phytochemistry 41:779–785

    Article  CAS  Google Scholar 

  • Li HJ, Jiang Y, Li P (2006) Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Nat Prod Rep 23:735–752

    Article  CAS  PubMed  Google Scholar 

  • Liang X, LeeHW LZ, Lu Y, Zou L, Ong CN (2018) Simultaneous quantification of 22 glucosinolates in 12 brassicaceae vegetables by hydrophilic interaction chromatography−tandem mass spectrometry. ACS Omega 3:15546–15553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichman BR (2021) The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 38:103–129

    Article  CAS  PubMed  Google Scholar 

  • MacLeod AJ, Rossiter JT (1985) The occurence and activity of epithiospecifier protein in some cruciferae seeds. Phytochemistry 24:1895–1898

    Article  CAS  Google Scholar 

  • McFarlane IJ, Lees EM, Conn EE (1975) The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor. J Biol Chem 250:4708–4713

    Article  CAS  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–43317

    Article  CAS  PubMed  Google Scholar 

  • Møller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13:337–346

    Article  Google Scholar 

  • Møller BL, Conn EE (1979) The biosynthesis of cyanogenic glucosides in higher plants: nhydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench. J Biol Chem 254:8575–8583

    Article  PubMed  Google Scholar 

  • Møller BL, Seigler DS (1998) Biosynthesis of cyanogenic glucosides, cyanolipids and related compounds. In: Singh B (ed) Plant amino acids: biochemistry and biotechnology. Decker, New York, pp 563–609

    Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sanchez-Pérez R et al (2008) β-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    Article  CAS  PubMed  Google Scholar 

  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H et al (2003) CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:67–72

    Article  Google Scholar 

  • Neilson EH, Goodger JQD, Motawia MS, Bjarnholt N, Frisch T et al (2011) Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type. Phytochemistry 72:2325–2334

    Article  CAS  PubMed  Google Scholar 

  • Olafsdottir S, Andersen JV, Jaroszewski JW (1989) Cyanohydrin glycosides of passifloraceae. Phytochemistry 28:127–132

    Article  CAS  Google Scholar 

  • Olafsdottir ES, Jorgensen LB, Jaroszewski JW (1992) Substrate specificity in the biosynthesis of cyclopentanoid cyanohydrin glucosides. Phytochemistry 31:4129–4134

    Article  CAS  Google Scholar 

  • Phi TD, Pham VC, Mai HDT, Litaudon M, Guéritte F, Nguyen VH, Chau VM (2011) Cytotoxic steroidal alkaloids from Kibatalia laurifolia. J Nat Prod 74:1236–1240

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski M, Schemenewitz A, Lopukhinat A, Mueller A, Janowitz T et al (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725

    Article  CAS  PubMed  Google Scholar 

  • Pitsch C, Keller M, Zinsmeister HD, Nahrstedt A (1984) Cyanogenic glycosides from Triticum monococcum. Planta Med 50:388–390

    Article  CAS  PubMed  Google Scholar 

  • Poulton JE, Li CP (1994) Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogenesis in undamaged Prunus seeds. Plant Physiol 104:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourmohseni H, Ibenthal WD, Machinek R, Remberg G, Wray V (1993) Cyanoglucosides in the epidermis of Hordeum vulgare. Phytochemistry 33:295–297

    Article  CAS  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Robinson T (1981) The biochemistry of alkaloids. Springer, New York

    Book  Google Scholar 

  • Rockenbach J, Nahrstedt A, Wray V (1992) Cyanogenic glycosides from Psydrax and Oxyanthus species. Phytochemistry 31:567–570

    Article  CAS  Google Scholar 

  • Rodman JE (1991) A taxonomic analysis of glucosinolate-producing plants, part 1: phenetics. Syst Bot 16(4):598–618

    Article  Google Scholar 

  • Schwind P, Wray V, Nahrstedt A (1990) Structure elucidation of an acylated cyanogenic triglycoside, and further cyanogenic constituents from Xeranthemum cylindraceum. Phytochemistry 29:1903–1911

    Article  CAS  Google Scholar 

  • Selmar D (2010) Biosynthesis of cyanogenic glycosides, glucosinolates and non-protein amino acids. Annu Plant Rev 40:92–181

    CAS  Google Scholar 

  • Sibbesen O, Koch B, Halkier BA, Møller BL (1995) Cytochrome P-450TYR is a multifunctional hemethiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacealdehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. J Biol Chem 270:3506–3511

    Article  CAS  PubMed  Google Scholar 

  • Smith RM (1977) The Celastraceae Alkaloids. In: Manske RHF (ed) The alkaloids: chemistry and physiology, vol 16. Academic Press, New York, pp 215–248

    Google Scholar 

  • St-Pierre A, Lajeunesse A, Desgagné-Penix I (2017) Determination of piperidine alkaloids from Indian Tobacco (Lobelia inflata) plants and plant-derived products. Austin Biochem 2(2) id1014:1–8.

    Google Scholar 

  • Swain E, Li CP, Poulton JE (1992) Tissue and subcellular localization of enzymes catabolizing (R)-amygdalin in mature Prunus serotina seeds. Plant Physiol 100:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamboli AM, Rub RA, Ghosh P, Bodhankar SL (2012) Antiepileptic activity of lobeline isolated from the leaf of Lobelia nicotianaefolia and its effect on brain GABA level in mice. Asian Pac J Trop Biomed 2(7):537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tietze LF (1983) Secologanin, a biogenetic key compound-synthesis and biogenesis of the iridoid and secoiridoid glycosides. Angew Chem Int Ed Engl 22:828–841

    Article  Google Scholar 

  • Tookey HL (1973) Crambe thioglucoside glucohydrolase (EC 3.2.3.1): separation of a protein required for epithiobutane formation. Can J Biochem 51:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Trenti F, Yamamoto K, Hong B, Paetz C, Nakamura Y, O’Connor SE (2021) Early and late steps of quinine biosynthesis. Org Lett 23:1793–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi AK, Ray AK, Mishra SK (2022) Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. J Basic Appl Sci 11–16

    Google Scholar 

  • Ul Haq I, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS (2020) Piperine: a review of its biological effects. Phytother Res 2020:1–21

    Google Scholar 

  • Vereshchagin AN, Karpenko KA, Elinson MN, Goloveshkin AS, Ushakov IE, Egorov MP (2018) Four-component stereoselective synthesis of tetracyano-substituted piperidines. Res Chem Intermed 44: 5623–5634. https://doi.org/10.1007/s11164-018-3444-7

  • Vioque J, Pastor JE, Alaiz M, Vioque E (1994) Chernotaxonornic study of seed glucosinolate composition in Coincya Rouy (Brassicaceae). Bot J Linn Soc 116:343–350

    Article  Google Scholar 

  • **ang ML, Hu BY, Qi ZH, Wang XN, **e TZ, Wang ZJ, Ma DY, Zeng Q, Luo XD (2022) Chemistry and bioactivities of natural steroidal alkaloids. Natural Products and Bioprospecting 12(23). https://doi.org/10.1007/s13659-022-00345-0

  • Wetter LR, Chisholm MD (1968) Sources of sulfur in the thioglucosides of various higher plants. Can J Biochem 46:931–935

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 134:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Wang Q, Liu Y, Hao X, Wang C, Liang Y, Chen J, **ao Y, Kai G (2021) Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biol 19(122):1–16

    CAS  Google Scholar 

  • Yulvianti M, Zidorn C (2021) Chemical diversity of plant cyanogenic glycosides: an overview of reported natural products. Molecules 26:719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao DK, Zhao Y, Chen SY, Kennelly EJ (2021) Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Nat Prod Rep 38:1423–1444

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Horton DB, Penthala NR, Nickell JR, Culver JP, Deaciuc AG, Dwoskin LP, Crooks PA (2013) Exploring the effect of N-substitution in nor-lobelane on the interaction with VMAT2: discovery of a potential clinical candidate for treatment of methamphetamine abuse. Med Chem Commun 4:564–568

    Article  CAS  Google Scholar 

  • Zhou MZ, Yan CY, Zeng Z, Luo L, Zeng W, Huang YH (2020) N-methyltransferases of caffeine biosynthetic pathway in plants. J Agric Food Chem 68(52):15359–15372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Semmar .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semmar, N. (2024). Nitrogen-Containing Compounds. In: Secondary Metabolites in Plant Stress Adaptation. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-52595-7_6

Download citation

Publish with us

Policies and ethics

Navigation