Plant Defense Against Pathogen Attacks

  • Chapter
  • First Online:
Secondary Metabolites in Plant Stress Adaptation

Abstract

Biotic stresses can provide from biological organisms that use plants as nutritive sources or from neighbor plants that compete for territory delimitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Farid IB, Choi YH, Kim HK, Hondel CVD, Meijden E, Verpoorte R (2006) The role of secondary metabolites in Arabidopsis and Brassica in the interaction with fungi. Curr Topics Plant Bio 7:47–73

    CAS  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Andersson MX, Nilsson AK, Johansson ON, Boztas G, Adolfsson LE, Pinosa F, Garcia C, Aronsson H, Mackey D, Tor M, Hamberg M, Ellerström M (2015) Involvement of the electrophilic isothiocyanate sulforaphane in Arabidopsis local defense responses. Plant Physiol 167:251–261

    Article  CAS  PubMed  Google Scholar 

  • Armah CN, Mackie AR, Roy C, Price K, Osbourn AE, Bowyer P, Ladha S (1999) The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 76:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arneson PA, Durbin RD (1968) Sensitivity of fungi to a-tomatine. Phytopathology 58:536–537

    Google Scholar 

  • Bednarek P (2012a) Chemical warfare or modulators of defence responses—the function of secondary metabolites in plant immunity. Curr Opin Plant Biol 15:407–414

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P (2012b) Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. ChemBioChem 13:1846–1859

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Loren V, van Themaat E, Maddula RK, Svatos A, Schulze-Lefert P (2011) Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytol 192:713–726

    Article  CAS  PubMed  Google Scholar 

  • Bell S, Guggenheim C (2019) Plant disease diagnosing and management. In: West A, Jensen J, Bell SM, Ellis L (eds) Idaho master gardener handbook, 19th edn

    Google Scholar 

  • Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Botta B, Vitali A, Menendez P et al (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:717–739

    Article  PubMed  Google Scholar 

  • Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892

    Article  CAS  PubMed  Google Scholar 

  • Bowyer P, Clarke BR, Lunness P, Daniels MJ, Osbourn AE (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267:371–374

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KK, Hampton MB (2011) Biological targets of isothiocyanates. Biochim Biophys Acta Gen Subj 1810:888–894

    Article  CAS  Google Scholar 

  • Browne LM, Conn KL, Ayer WA, Tewari JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 47:3909–3914

    Article  CAS  Google Scholar 

  • Burow M, Markert J, Gershenzon J, Wittstock U (2006) Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J 273(111):2432–2446

    Article  CAS  PubMed  Google Scholar 

  • Byther RS, Foss CR, Antonelli AL, Maleike RR, Bobbitt VM (2000) Landscape plant problems: a pictorial diagnostic manual. Washington State University Extension, MISC0194

    Google Scholar 

  • Cartwright D, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1977) Chemical activation of host defence mechanisms as a basis for crop protection. Nature 267:511–513

    Article  CAS  Google Scholar 

  • Duan L, Liu H, Li X, **ao J, Wang S (2014) Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plant 152:486–500

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Ebel J, Ayers AR, Albersheim P (1976) Host–pathogen interactions: XII. Response of suspension-cultured soybean cells to the elicitor isolated from Phytophthora megasperma var. sojae, a fungal pathogen of soybeans. Plant Physiol 57:775–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 65:155–185

    Article  CAS  PubMed  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-omethyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heraud P, Cowan MF, Marzec KM, Møller BL, Blomstedt CK, Gleadow R (2018) Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Sci Rep 8:2691

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156:2082–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibraheem F, Gaffoor I, Chopra S (2010) Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics 184:915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim RK (2005) A forty-year journey in plant research: original contributions to flavonoid biochemistry. Can J Bot 83:433–450

    Article  CAS  Google Scholar 

  • Jackson RW, DeMoss JA (1965) Effects of toluene on Escherichia coli. J Bacteriol 90:1420–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keukens EAJ, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WMF, de Kruijff B (1995) Molecular basis of glycoalkaloid induced membrane disruption. Biochimica et Biophysica Acta (BBA)—Biomembranes 1240:216–228

    Google Scholar 

  • Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radical Biol Med 27:1208–1218

    Article  CAS  Google Scholar 

  • Langcake P, Pryce RJ (1976) Production of resveratrol by Vitis vinifera and other members of Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  • Larsen PO (1981) Glucosinolates. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 7, secondary plant products. Academic, New York, pp 501–525

    Google Scholar 

  • Maroti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374

    Article  CAS  PubMed  Google Scholar 

  • Miedes E, Vanholme R, Boerjan W, Molina A (2014) The role of the secondary cell walls in plant resistance to pathogens. Front Plant Sci 5:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithen RF, Lewis BG, Fenwick GR (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans Br Mycol Soc 87:433–440

    Article  CAS  Google Scholar 

  • Møller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13:337–346

    Article  Google Scholar 

  • Moore D, Robson GD, Trinci APJ (2019) 14.9 plant disease basics: the disease triangle. Twenty-First Century Guidebook to Fungi (online version), 2nd edn. Cambridge University Press, New York. http://www.davidmoore.org.uk/21st_Century_Guidebook_to_Fungi_PLATINUM/Ch14_09.htm

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sanchez-Perez R, Møller BL Bak S (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    Google Scholar 

  • Morgan RL, Zhou H, Lehto E, Nguyen N, Bains A, Wang X, Ma W (2010) Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Mol Microbiol 76:437–455

    Article  CAS  PubMed  Google Scholar 

  • Müller KO, Börger H (1940) Experimental studies on the Phytopthora resistance of potatoes. A contribution to the problem of acquired resistance in the plants. Arbeitender Biologischen Reichsanstalt Für Land Und Forstwirtschaft 23:189–231

    Google Scholar 

  • Nielsen KA, Gotfredsen CH, Buch-Pedersen MJ, Ammitzboll H, Mattsson O, Duus JO, Nicholson RL (2004) Inclusions of flavonoid 3-deoxyanthocyanidins in Sorghum bicolor self-organize into spherical structures. Physiol Mol Plant Pathol 65:187–196

    Article  CAS  Google Scholar 

  • Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101:353–363

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book 9:e0142

    Google Scholar 

  • Ökmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH, Collemare J, de Wit PJ (2013) Detoxification of a-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol 198:1203–1214

    Article  PubMed  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence—a soap story. Trends Plant Sci 1:4–9

    Article  Google Scholar 

  • Osbourn A, Goss RJM, Field RA (2011) The saponins—polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Pathak RK, Taj G, Pandey D, Kasana VK, Baunthiyal M, Kumar A (2016) Molecular modeling and docking studies of phytoalexin(s) with pathogenic protein(s) as molecular targets for designing the derivatives with anti-fungal action on Alternaria spp. of Brassica. Plant Omics J 9(3):172–182

    Google Scholar 

  • Paxton JD (1981) Phytoalexins—a working redefinition. Phytopathol Z 101:106–109

    Article  Google Scholar 

  • Pedras MSC, Abdoli A (2017) Pathogen inactivation of cruciferous phytoalexins: detoxification reactions, enzymes and inhibitors. RSC Adv 7:23633–23646

    Article  CAS  Google Scholar 

  • Pedras MSC, Adio AM (2008) Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. Phytochemistry 69:889–893

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Ahiahonu WK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66:391–422

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE (2014) Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species. Chem Biodivers 11(6):910–918

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Jha M, Ahiahonu WK (2003) The synthesis and biosynthesis of phytoalexins produced by cruciferous plants. Curr Org Chem 7:1635–1647

    Article  CAS  Google Scholar 

  • Pedras MSC, Zheng Q-A, Gadagi RS (2007) The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins. Chem Commun 2007:368–370

    Article  Google Scholar 

  • Pedras MSC, Chumala PB, ** W, Islam MS, Hauck DW (2009) The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    Article  CAS  PubMed  Google Scholar 

  • Perrin DR, Bottomley W (1961) Pisatin—antifungal substance from Pisum sativum L. Nature 191:76–77

    Article  CAS  PubMed  Google Scholar 

  • Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317

    Article  CAS  PubMed  Google Scholar 

  • Pscheidt JW, Ocamb CM (eds) (2019) Pacific Northwest plant disease management handbook. Oregon State University, Corvallis

    Google Scholar 

  • Rogers EE, Glazebrook J, Ausubel FM (1996) Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol Plant Microbe Interact 9:748–757

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci USA 108:5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678

    Article  CAS  PubMed  Google Scholar 

  • Selmar D (2010) Biosynthesis of cyanogenic glycosides, glucosinolates and non-protein amino-acids. Ann Plant Rev 40:92–181

    CAS  Google Scholar 

  • Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, Asahi H, Kurokawa K, Arita M, Saito K, Ohta D, Shibata D, Kanaya S (2006) KNApSAcK: a comprehensive species-metabolite relationship database. In: Saito K, Dixon RA, Willmitzer L (eds) Plant metabolomics. Springer, Berlin, pp 165–181

    Chapter  Google Scholar 

  • De Smet MJ, Kingma J, Witholt B (1978) The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim Biophys Acta 4 506(1):64–80

    Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in Sorghum as a site-specific response to fungal ingress. Science 248:1637–1639

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS, Cole RJ, Dorner JW, Yagen B (1995) Isolation, purification, and liquid chromatographic determination of stilbene phytoalexins in peanuts. J AOAC Int 78:1177–1182

    Article  CAS  Google Scholar 

  • Steel CC, Drysdale RB (1988) Electrolyte leakage from plant and fungal tissues and disruption of liposomemembranes by α-tomatine. Phytochemistry 27:1025–1030

    Article  CAS  Google Scholar 

  • Thayer SS, Conn EE (1981) Subcellular localization of dhurrin β-glucosidase and hydroxynitrile lyase in the mesophyll cells of Sorghum leaf blades. Plant Physiol 67:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tierens KFMJ, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schroder J, Schroder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618

    Article  CAS  PubMed  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics—phytoalexins versus “phytoanticipins.” Plant Cell 6:1191–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168

    Article  PubMed  PubMed Central  Google Scholar 

  • von Röpenack E, Parr A, Schulze-Lefert P (1998) Structural Analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 273:9013–9022

    Article  Google Scholar 

  • Wang Y, Tan W, Li WZ, Li Y (2001) A facile synthetic approach to prenylated flavanones: first total syntheses of (±)-bonannione A and (±)-sophoraflavanone A. J Nat Prod 64:196–199

    Article  CAS  PubMed  Google Scholar 

  • Wei BQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK (2002) A model binding site for testing scoring functions in molecular docking. J Mol Biol 322:339–355

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book 8:e0134

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu D, Xue M, Shen Z, Jia X, Hou X, Lai D, Zhou L (2021) Phytotoxic secondary metabolites from fungi. Toxins 13:261

    Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semmar, N. (2024). Plant Defense Against Pathogen Attacks. In: Secondary Metabolites in Plant Stress Adaptation. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-52595-7_12

Download citation

Publish with us

Policies and ethics

Navigation