A State of the Art of Biofuel Production Using Biomass Wastes: Future Perspectives

  • Chapter
  • First Online:
Valorization of Biomass Wastes for Environmental Sustainability

Abstract

A huge amount of biomass wastes is generated annually from domestic and agro-industrial activities. Improper management and disposal of biomass wastes are the main causes of environmental burdens and waste of resources. On the other hand, biomass wastes are potential feedstocks for bioenergy production as they are abundant and renewable. Due to energy crisis, environmental pollution, and climate change, bioenergy production from biomass wastes has received attention worldwide. However, the merits and demerits of different feedstocks, technological constraints, and methods for intensifying waste-to-energy (WtE) technologies have not been adequately explored. This chapter provides an overview of major types of biofuels and biomass waste, technical evaluation of existing WtE conversion processes, and critical discussion on enhancement strategies. It is expected to enable valorization of biomass wastes as biofuels, thereby contributing to climate change abatement and circular economy evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 June 2024

    A correction has been published.

References

  • Al Ramahi, M., Keszthelyi-Szabó, G., & Beszédes, S. (2021). Coupling hydrothermal carbonization with anaerobic digestion: An evaluation based on energy recovery and hydrochar utilization. Biofuel Research Journal, 8(3), 1444–1453.

    Article  Google Scholar 

  • Amenaghawon, A. N., Evbarunegbe, N. I., & Obahiagbon, K. (2021). Optimum biodiesel production from waste vegetable oil using functionalized cow horn catalyst: A comparative evaluation of some expert systems. Cleaner Engineering and Technology, 4, 100184.

    Article  Google Scholar 

  • Anekwe, I. M. S., Ar mah, E. K., & Tetteh, E. K. (2022). Bioenergy production: Emerging technologies. Biomass, Biorefineries and Bioeconomy, 225.

    Google Scholar 

  • Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.

    Article  CAS  Google Scholar 

  • Aurnob, A. K., Arnob, A., Kabir, K. B., Islam, M. S., Rahman, M. M., & Kirtania, K. (2022). Hydrothermal carbonization of biogenic municipal waste for biofuel production. Biomass Conversion and Biorefinery, 1–9.

    Google Scholar 

  • Basak, B., Saha, S., Chatterjee, P. K., Ganguly, A., Chang, S. W., & Jeon, B. H. (2020). Pretreatment of polysaccharidic wastes with cellulolytic Aspergillus fumigatus for enhanced production of biohythane in a dual-stage process. Bioresource Technology, 299, 122592.

    Article  CAS  Google Scholar 

  • Beltrán-Ramírez, F., Orona-Tamayo, D., Cornejo-Corona, I., González-Cervantes, J. L. N., de Jesús Esparza-Claudio, J., & Quintana-Rodríguez, E. (2019). Agro-industrial waste revalorization: The growing biorefinery. Biomass for Bioenergy-Recent Trends and Future Challenges, 83–102.

    Google Scholar 

  • Chandraratne, M. R., & Daful, A. G. (2022). Advances in bioenergy production using fast pyrolysis and hydrothermal processing (p. 269). Biomass.

    Google Scholar 

  • Clauser, N. M., González, G., Mendieta, C. M., Kruyeniski, J., Area, M. C., & Vallejos, M. E. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability, 13(2), 794.

    Article  CAS  Google Scholar 

  • Czekała, W., Bartnikowska, S., Dach, J., Janczak, D., Smurzyńska, A., Kozłowski, K., et al. (2018). The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122.

    Article  Google Scholar 

  • Edwiges, T., Frare, L., Mayer, B., Lins, L., Triolo, J. M., Flotats, X., & de Mendonça Costa, M. S. S. (2018). Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71, 618–625.

    Article  Google Scholar 

  • Fang, S., Yu, Z., Lin, Y., Lin, Y., Fan, Y., Liao, Y., & Ma, X. (2017). A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives. Applied Thermal Engineering, 111, 292–300.

    Article  CAS  Google Scholar 

  • Garba, A. (2020). Biomass conversion technologies for bioenergy generation: An introduction. In Biotechnological applications of biomass. IntechOpen.

    Google Scholar 

  • Gil, A. (2022). Challenges on waste-to-energy for the valorization of industrial wastes: Electricity, heat and cold, bioliquids and biofuels. Environmental Nanotechnology, Monitoring & Management, 17, 100615.

    Article  CAS  Google Scholar 

  • Gökçek, Ö. B., Baş, F., Muratçobanoğlu, H., & Demirel, S. (2023). Investigation of the effects of magnetite addition on biohydrogen production from apple pulp waste. Fuel, 339, 127475.

    Article  Google Scholar 

  • Gomaa, M. A., & Abed, R. M. (2017). Potential of fecal waste for the production of biomethane, bioethanol and biodiesel. Journal of Biotechnology, 253, 14–22.

    Article  CAS  Google Scholar 

  • Indrawan, B., Prawisudha, P., & Yoshikawa, K. (2012). Combustion characteristics of chlorine-free solid fuel produced from municipal solid waste by hydrothermal processing. Energies, 5(11), 4446–4461.

    Article  CAS  Google Scholar 

  • Irmak, S. (2019). Challenges of biomass utilization for biofuels. Biomass for Bioenergy-Recent Trends and Future Challenges, 1–11.

    Google Scholar 

  • Jung, S., Shetti, N. P., Reddy, K. R., Nadagouda, M. N., Park, Y. K., Aminabhavi, T. M., & Kwon, E. E. (2021). Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks – A review. Energy Conversion and Management, 236, 114038.

    Article  CAS  Google Scholar 

  • Kang, K., Nanda, S., Sun, G., Qiu, L., Gu, Y., Zhang, T., et al. (2019). Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar. Energy, 186, 115795.

    Article  CAS  Google Scholar 

  • Kim, M., Jung, S., Lee, D. J., Lin, K. Y. A., Jeon, Y. J., Rinklebe, J., et al. (2020). Biodiesel synthesis from swine manure. Bioresource Technology, 317, 124032.

    Article  CAS  Google Scholar 

  • Kumar, R., Kim, T. H., Basak, B., Patil, S. M., Kim, H. H., Ahn, Y., et al. (2022). Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. Journal of Cleaner Production, 333, 130180.

    Article  CAS  Google Scholar 

  • Lee, X. J., Ong, H. C., Gao, W., Ok, Y. S., Chen, W. H., Goh, B. H. H., & Chong, C. T. (2021). Solid biofuel production from spent coffee ground wastes: Process optimization, characterization and kinetic studies. Fuel, 292, 120309.

    Article  CAS  Google Scholar 

  • Lee, J., Kim, S., You, S., & Park, Y. K. (2023). Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renewable and Sustainable Energy Reviews, 178, 113240.

    Article  CAS  Google Scholar 

  • Liu, Z., Quek, A., Hoekman, S. K., & Balasubramanian, R. (2013). Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103, 943–949.

    Article  CAS  Google Scholar 

  • Matsakas, L., Raghavendran, V., Yakimenko, O., Persson, G., Olsson, E., Rova, U., et al. (2019). Lignin-first biomass fractionation using a hybrid organosolv–steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource Technology, 273, 521–528.

    Article  CAS  Google Scholar 

  • Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., & Zabaniotou, A. (2015). A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Applied Energy, 148, 32–38.

    Article  Google Scholar 

  • Moon, J., Mun, T. Y., Yang, W., Lee, U., Hwang, J., Jang, E., & Choi, C. (2015). Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification. Energy Conversion and Management, 103, 401–407.

    Article  Google Scholar 

  • Nadir, N., Ismail, N. L., & Hussain, A. S. (2019). Fungal pretreatment of lignocellulosic materials. In Biomass for bioenergy-recent trends and future challenges. IntechOpen.

    Google Scholar 

  • Nanda, S., & Berruti, F. (2021). A technical review of bioenergy and resource recovery from municipal solid waste. Journal of Hazardous Materials, 403, 123970.

    Article  CAS  Google Scholar 

  • Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2020). Critical challenges in biohydrogen production processes from organic feedstocks. Biomass Conversion and Biorefinery, 1–19.

    Google Scholar 

  • Panjičko, M., Zupančič, G. D., Fanedl, L., Logar, R. M., Tišma, M., & Zelić, B. (2017). Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, 519–529.

    Article  Google Scholar 

  • Rezaeitavabe, F., Saadat, S., Talebbeydokhti, N., Sartaj, M., & Tabatabaei, M. (2020). Enhancing biohydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass and Bioenergy, 143, 105846.

    Article  CAS  Google Scholar 

  • Roque, L. R., Morgado, G. P., Nascimento, V. M., Ienczak, J. L., & Rabelo, S. C. (2019). Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation. Fuel, 242, 775–787.

    Article  CAS  Google Scholar 

  • Sahoo, K., Bilek, E., Bergman, R., & Mani, S. (2019). Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Applied Energy, 235, 578–590.

    Article  Google Scholar 

  • Salakkam, A., Plangklang, P., Sittijunda, S., Kongkeitkajorn, M. B., Lunprom, S., & Reungsang, A. (2019). Biohydrogen and methane production from lignocellulosic materials. Biomass for Bioenergy-Recent Trends and Future Challenges.

    Google Scholar 

  • Santana, M. S., Alves, R. P., da Silva Borges, W. M., Francisquini, E., & Guerreiro, M. C. (2020). Hydrochar production from defective coffee beans by hydrothermal carbonization. Bioresource Technology, 300, 122653.

    Article  Google Scholar 

  • Scarlat, N., Motola, V., Dallemand, J. F., Monforti-Ferrario, F., & Mofor, L. (2015). Evaluation of energy potential of municipal solid waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269–1286.

    Article  Google Scholar 

  • Sekoai, P. T., Ayeni, A. O., & Daramola, M. O. (2019). Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste and Biomass Valorization, 10, 1177–1189.

    Article  CAS  Google Scholar 

  • Shafizadeh, A., & Danesh, P. (2022). Biomass and energy production: Thermochemical methods. Biomass, Biorefineries and Bioeconomy, 247.

    Google Scholar 

  • Sharma, H. B., Panigrahi, S., Sarmah, A. K., & Dubey, B. K. (2020). Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. Science of the Total Environment, 706, 135907.

    Article  CAS  Google Scholar 

  • Sonu, Rani, G. M., Pathania, D., Umapathi, R., Rustagi, S., Huh, Y. S., Gupta, V. K., et al. (2023). Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Science of the Total Environment, 875, 162667.

    Article  CAS  Google Scholar 

  • Tandon, M., Thakur, V., Tiwari, K. L., & Jadhav, S. K. (2018). Enterobacter ludwigii strain IF2SW-B4 isolated for biohydrogen production from rice bran and de-oiled rice bran. Environmental Technology & Innovation, 10, 345–354.

    Article  Google Scholar 

  • U.S. EIA. (2019). EIA releases plant-level U.S. biodiesel production capacity data. U.S. Energy Information Administration.

    Google Scholar 

  • Wang, L., Li, A., & Chang, Y. (2017). Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. Water Research, 112, 72–82.

    Article  CAS  Google Scholar 

  • Yu, D., Guo, J., Meng, J., & Sun, T. (2023). Biofuel production by hydro-thermal liquefaction of municipal solid waste: Process characterization and optimization. Chemosphere, 328, 138606.

    Article  CAS  Google Scholar 

  • Zhuang, X., Liu, J., Zhang, Q., Wang, C., Zhan, H., & Ma, L. (2022). A review on the utilization of industrial biowaste via hydrothermal carbonization. Renewable and Sustainable Energy Reviews, 154, 111877.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi An Hang Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T.A.H., Tran, T.V.H., Nguyen, M.V. (2024). A State of the Art of Biofuel Production Using Biomass Wastes: Future Perspectives. In: Srivastav, A.L., Bhardwaj, A.K., Kumar, M. (eds) Valorization of Biomass Wastes for Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-031-52485-1_6

Download citation

Publish with us

Policies and ethics

Navigation