• 78 Accesses

Abstract

This paper is an introduction to the use of techniques originally developed by Newton to study local solutions of algebraic and ordinary differential equations. We first study the application of Newton’s polygon to algebraic equations with coefficients in a valued field, showing the limitations of its use for valuations of rank greater than one. The Theorem of Kaplansky is the key to have explicit solutions for the rank one case. For differential equations, the lack of a Differential Kaplansky’s theorem, is an obstacle to have a general theory, but we study ordinary differential equations with generalized series with exponents in subgroups of \(\mathbb {R}\) as coefficients. In booth cases we pointed up the possibility of the use valuations as solution of equations. The author wishes to thank to the referee for his (many) precise and detailed corrections that have improved this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Generalized series were introduced by Hahn [27], and in a slightly stronger form by MacLane [41] who called them simply formal series. Some authors call them Hahn’s series, and for some others as Grigoriev and Singer [26] generalized series are the series of Example 8.2.6\((4)\).

References

  1. Abhyankar, S.S. Historical ramblings in algebraic geometry and related algebra. Amer. Math. Monthly. 83, 1976, 409–448 398

    Google Scholar 

  2. Aroca, F. Metodos algebraicos en ecuaciones diferenciales . Tesis Doctoral. U. Valladolid, 2000 420

    Google Scholar 

  3. Aroca, F., Cano, J. Jung, F. Power series solutions for non linear PDE’s ISAAC 2003. Academic Press. 2003 440

    Google Scholar 

  4. Aroca, F., Cano, J. Formal solutions for linear PDE’s and convex polyhedra Journ. of Symb. Comp.. 32, 2001, 717–737 440

    Google Scholar 

  5. Aschenbrenner,M., van den Dries,L. H– fields and their Liouville extensions. Math, Z. 242, 2002, 543–588 426,431

    Google Scholar 

  6. Aschenbrenner, M. , van den Dries, L. , van der Hoeven, J. Maximal immediate extensions of valued differential fields. Proceedings of the London Mathematical Society.117,(2017), 10.1112/plms.12128. 407, 426, 429

    Google Scholar 

  7. Bois–Reymond P. du. Sur la grandeur relative des infinis des fonctions. Ann. di Mat. (2), t.IV (1871), 338–353. 423

    Google Scholar 

  8. Bois–Reymond P. du. Über asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen. Math. Ann., t. VIII (1875), 362–414. 423

    Google Scholar 

  9. Borel, E.Mémoire sur les Séries Divergentes. Ann. Sci. Ecole. Norm. Sup., 16, (1899), 9–136 426

    Google Scholar 

  10. Bourbaki, N. Fonctions d’une Variable Réelle, Chapter V.Hermann, Paris. 1961 407, 425

    Google Scholar 

  11. Briot, C.A., Bouquet, J.C.: Propriétés des fonctions définies par les équations différentielles. Journal de l’Ecole Polytechnique, 36: 133–198, 1856. 429

    Google Scholar 

  12. Camacho, C.: Quadratic forms and holomorphic foliations on singular surfaces. Math. Annalen, 282 : 177–184, 1988. 440

    MathSciNet  Google Scholar 

  13. Camacho, C., Sad, P.: Invariant Varieties Through Singularities of Holomorphic Vector Fields. Ann. of Math.,115 :579–595, 1982 . 444

    Google Scholar 

  14. Cano, J.: An Extension of the Newton-Puiseux Polygon Construction to give Solutions of Pfaffian Forms. Ann. Inst. Fourier ,43, 125–142, 1993 . 429, 440, 443

    Google Scholar 

  15. Cano, J.: Construction of Invariant Curves for Holomorphic Vector Fields. Proc. Amer. Math. Soc.,125 :2649–2650, 1997. 5 429, 440

    Google Scholar 

  16. Cano, J.: On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations Analysis.International Math. Journ. of Analysis and iys Applications,13 :103–119, 1993. 5 444

    Google Scholar 

  17. Cano, J., Fortuny, P.: The space of generalized formal power series solution of an ordinary differential equation. Asterisque,323 :61–81, 2009. 429, 440

    Google Scholar 

  18. Cano,F.,Moussu, R. and Rolin, J–P.: Non–oscillating integral curves and valuations.J. Reine Angew. Math. 582, 107–141, 2005. 427

    Google Scholar 

  19. Cano,F.,Moussu, R.,Sanz, F.: Oscillation, spiralement, tourbillonnement.Commentarii Mathematici Helvetici,75,284–318, 2000. 427

    Google Scholar 

  20. Cramer, G Introduction à l’analyse des lignes courbes algébriques. Frères Cramer et Cl. Philibert, Genève, 1750. 398, 401

    Google Scholar 

  21. Engler, A. J., Prestel A. Valued Fields. Springer Verlag, Berlin, Heidelberg, 2005. 401

    Google Scholar 

  22. Fine, J.: On the functions defined by differential equations with an extension of the Puiseux polygon construction to these equations. Amer. Journ. of Math.,XI :317–328, 1889. 429

    Google Scholar 

  23. Fine, J.: Singular solutions of ordinary differential equations. Amer. Journ. of Math.,XII :293–322,1890. 429

    Google Scholar 

  24. Fuchs, L.Abelian groups.Pergamon press, London (1960) The valuative theory of foliations Canad.J. Math.,54 897–915,2002. 401

    Google Scholar 

  25. Gokhman, D.: Functions in a Hardy field not ultimately \(C^{\infty }\). Complex variables, 32, 1–6, 1997. 423

    Google Scholar 

  26. Grigoriev, D. Yu, Singer, M.: Solving ordinary differential equations in terms of series with real exponents. Trans. A.M.S., 327, 339–351, 1991. 405, 429

    Google Scholar 

  27. Hahn, H.Über die nicharchimedischen grössensysteme. Sitz. der Kaiserlichen. Akad. der Wiss., Mat. Nat. Kl.Section IIa 116 (1907), 601–653 405

    Google Scholar 

  28. Hardy, G. H.Orders of Infinity.Cambridge Tracts in Mathematics, vol. 12, (1910) 423

    Google Scholar 

  29. Hardy, G. H.Properties of Logaritmico–Exponential Functions.Proc. of the London Math. Soc., 10 (1912), 54–90

    Google Scholar 

  30. Hardy, G. H.Some results concerning the behaviour at infinty of a real and continous solution of an algebraic differential equation of the first order. Proc. London Math. Soc. ,Ser. 2, 10 (1912), 451–468 423

    Google Scholar 

  31. Hironaka, H.: Characteristic polyhedra of singularities. J. of Math. Kyoto Univ. 7 (1967), 251–293. 420

    Google Scholar 

  32. Ince, P.: Ordinary differential equations,Dover, New York, 1956 429

    Google Scholar 

  33. Kaplansky, I.: Differential algebra,Hermann,Paris, 1976 421

    Google Scholar 

  34. Kaplansky, I.: Maximal fields with valuations.Duke Math. J.,9, 303–321, 1942. 406

    Google Scholar 

  35. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York and London, 1973. 421

    Google Scholar 

  36. Kuhlman, S., Matusinski, M.: Hardy tipe derivations on generalised series fields Journal of Algebra 351,185–203, 2012. 429, 431

    Google Scholar 

  37. Krull, W. Allgemeine Bewertungstheorie.Journal für die reine und angewandte Mathematik. (Crelle) 167 (1932), 160–196 404, 423

    Google Scholar 

  38. Kürschak, J. Über Limesbildung und allgemeine Körpertheorie.Proceedings of the 5th. International Congress of Mathematicians Cambridge 1912, vol.1 (1913), 285–289 404, 423

    Google Scholar 

  39. Kürschak, J. Über Limesbildung und allgemeine Körpertheorie. Journal für die reine und angewandte Math. (Crelle) 142 (1913), 211–253 404, 423

    Google Scholar 

  40. Lindelöf, E.: Sur la croissance des intégrales des équationes différentielles algébriques du premier ordreBull. Soc. Math. France 27,205–215, 1899. 426

    Google Scholar 

  41. MacLane, S.: The universality of formal power seriesBull. Amer. Math. Soc. 45,888–890, 1939. 405

    Google Scholar 

  42. McDonald, J.: Fiber polytopes and fractional power seriesJournal of Pure and Appl Algebra 104,213–233, 1995. 420, 440

    Google Scholar 

  43. Matusinski,M.: A differential Puiseux Theorem in generalised power series of finite rank.Ann. Fac.Sci. Toulouse,Vol XX , n. 2, 247–293, 2011. 431

    Google Scholar 

  44. Newton, I.: De methodis serierum et fluxionum. in D. T. Whiteside (ed.), The Mathematical Papers of Isaac Newton, Cambridge University Press, Cambridge, vol. 3, 1967–1981 397

    Google Scholar 

  45. Newton,I.: The Method of Fluxions and infinite Series. Translated from the Latin by J. Colson.(Ed.)H. Woodfall, London, 1736. 398

    Google Scholar 

  46. Newton,I.: La methode des Fluxions et des Suites infinites. Translated from the Latin by M. de Buffon.Chez de Bure l’âiné, Paris 1740. 398

    Google Scholar 

  47. Newton,I.: Methodus Fluxionum et Serierum Infinitorum. Cum ejusdem Applicatione ad Curvarum Geometriam. Translation to latin by G. Salvemini (Jean de Castillon) of the translation by J. Colson.(Ed.)Bousquet, Lausnne, Geneva 1744. 398

    Google Scholar 

  48. Newton,I.: Methodus Fluxionum et Serierum Infinitorum. Cum ejusdem Applicatione ad Curvarum Geometriam. Original in Latin of the Method of fluxions, edited by Samuel Hersley.J. Nichols, Londini 1779. 398

    Google Scholar 

  49. Newton, I.: Letter to Oldenburg, June 13, 1676. in H. W. Turnbull (ed.), The Correspondence of Isaac Newton, vol. 2, Cambridge University Press, Cambridge, 1960. 398

    Google Scholar 

  50. Ribemboim, P.Théorie des valuations Les presses de L’Université de Montréal, Montréal, Quebec, 1965. 401

    Google Scholar 

  51. Rosenlicht, M.: Differential valuations.Pac. Journ. of Math. 86, 301–319, 1980. 429

    Google Scholar 

  52. Rosenlicht, M.: The rank of a Hardy fieldTrans. Amer Math. Soc.. 280, 659–671, 1983. 426

    Google Scholar 

  53. Ugarte, F.: Algebra de series generalizadas. Ecuaciones con coeficientes en cuerpos valorados. Tesis Doctoral. U. Valladolid, 2009. 408

    Google Scholar 

  54. Van der Hoeven, J.: Transseries an real differential algebra,L. N. M., 1888. Springer–Verlag, Berlin, 2006 406

    Google Scholar 

  55. Van den Dries, L.: Bounding the rate of growth of solutions of algebraic differential equations in Hardy fields. Stanford Univ. 1982. 426

    Google Scholar 

  56. Vijayaraghavan, T. Sur la croissance des fonctions définies par les équations différentielles.C. R. Acad. Sci. Paris, 194 (1932), 827–829 426

    Google Scholar 

  57. Zariski, O. Applicazioni geometriche della teoria delle valutazioni. Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5) 13 (1954), 51–88 403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Aroca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aroca, J.M. (2024). Newton Polygon. In: Cano, F., Cisneros-Molina, J.L., Dũng Tráng, L., Seade, J. (eds) Handbook of Geometry and Topology of Singularities V: Foliations. Springer, Cham. https://doi.org/10.1007/978-3-031-52481-3_8

Download citation

Publish with us

Policies and ethics

Navigation