Learnable Objective Image Function for Accelerated MRI Reconstruction

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

  • 357 Accesses

Abstract

Magnetic Resonance Imaging (MRI) provides strong contrast for soft tissues but requires long acquisition times, oftentimes resulting in the motion artifacts. Recent advancements in MRI reconstruction from undersampled data rely on compressed sensing (CS) and deep learning (DL) techniques, allowing for significant scan acceleration while maintaining the image quality nearly at the fully sampled level.

In this study, we propose to use the convolutional neural networks (CNN), such as U-net, to parametrize the objective function employed in the compressed sensing optimization problems. By doing so, our aim is to avoid unrealistic reconstructions often associated with traditional DL-based image reconstruction techniques.

To validate the proposed method, we used the CMRxRecon dataset containing cardiac raw k-space data. The results demonstrate realistic reconstruction of anatomical structures, outperforming classical CS reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  2. Belov, A., Stadelmann, J., Kastryulin, S., Dylov, D.V.: Towards Ultrafast MRI via Extreme k-Space Undersampling and Superresolution. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 254–264. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_25

    Chapter  Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  4. Debatin, J.F., McKinnon, G.C.: Ultrafast MRI. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-80384-0

    Book  Google Scholar 

  5. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  6. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  7. Kuzmina, E., Razumov, A., Rogov, O.Y., Adalsteinsson, E., White, J., Dylov, D.V.: Autofocusing+: noise-resilient motion correction in magnetic resonance imaging. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 365–375. Springer, Heidelberg (2022), https://doi.org/10.1007/978-3-031-16446-0_35

  8. Liu, R., Zhang, Y., Cheng, S., Luo, Z., Fan, X.: A deep framework assembling principled modules for CS-MRI: unrolling perspective, convergence behaviors, and practical modeling. IEEE Trans. Med. Imaging 39(12), 4150–4163 (2020)

    Article  Google Scholar 

  9. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  10. Oh, G., et al.: Unpaired deep learning for accelerated MRI using optimal transport driven cycleGAN. IEEE Trans. Comput. Imag. 6, 1285–1296 (2020)

    Article  MathSciNet  Google Scholar 

  11. Pezzotti, N., et al.: An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 8, 204825–204838 (2020)

    Article  Google Scholar 

  12. Razumov, A., Rogov, O., Dylov, D.V.: Optimal MRI undersampling patterns for ultimate benefit of medical vision tasks. Magn. Reson. Imaging 103, 37–47 (2023)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Song, L., Zhang, J., Wang, Q.: MRI reconstruction based on three regularizations: total variation and two wavelets. Biomed. Signal Process. Control 30, 64–69 (2016)

    Article  Google Scholar 

  15. Uecker, M., et al.: Espirit-an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  16. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for tvl1-l2 signal reconstruction from partial Fourier data. IEEE J. Sel. Topics Signal Process. 4(2), 288–297 (2010)

    Article  Google Scholar 

  17. Ye, J.C.: Compressed sensing MRI: a review from signal processing perspective. BMC Biomed. Eng. 1(1), 1–17 (2019)

    Article  Google Scholar 

  18. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Razumov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Razumov, A., Dylov, D.V. (2024). Learnable Objective Image Function for Accelerated MRI Reconstruction. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation