Aspect Ratio Optimization of Piezoceramic Piezoelements for Maximizing Energy Conversion in Energy Harvesting Applications

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2023)

Abstract

In this work, the dependences of complex electromechanical parameters of rectangle-shaped piezoceramic elements on the aspect ratio, that is the ratio between length (W2) and width (W1) were studied and analyzed. Rectangle-shaped samples of the PZT type dense and porous piezoceramics with the aspect ratio G = W2/W1 in the range from 1 to 6 and equal thickness were prepared and studied. Dependences of complex piezoelectric (d31), electromechanical (k31), elastic (S11E) and dielectric (ε33T) coefficients on the aspect ratio G were measured and analyzed on the length-thickness extensional mode of rectangular piezoelements oscillations using the piezoelectric resonance analysis program (PRAP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowen, C.R., et al.: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-29143-7.pdf

    Book  Google Scholar 

  2. Song, H.-C., et al.: Piezoelectric energy harvesting design principles for materials and structures: material figure-of-merit and self-resonance tuning. Adv. Mater. 32, 2002208–1 (2020). https://doi.org/10.1002/adma.202002208

  3. Xu, R., Kim, S.G.: Figures of merits of piezoelectric materials in energy harvesters. In: Conference Proceedings of Power MEMS, pp. 464–468 (2012)

    Google Scholar 

  4. Preimesberger, J.I., Arnold, C.B.: Figures of merit for piezoelectrochemical energy-harvesting systems. Joule 4(9), 1893–1902 (2020). https://doi.org/10.1016/j.joule.2020.07.019

    Article  CAS  Google Scholar 

  5. Roscow, J.I., et al.: Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. Eur. Phys. J. Special Topics. 228, 1537 (2019). https://doi.org/10.1140/epjst/e2019-800143-7

    Article  Google Scholar 

  6. IEEE Standard on Piezoelectricity. ANSI/IEEE Std. (1987)

    Google Scholar 

  7. Pardo, L., et al.: Determination of the PIC700 ceramic’s complex piezo-dielectric and elastic matrices from manageable aspect ratio resonators. Materials 14, 4076 (2021). https://doi.org/10.3390/ma14154076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, M., et al.: Aspect ratio dependence of electromechanical coupling coefficient of piezoelectric resonators. Appl. Phys. Lett. 87(13), 132901–132911 (2005). https://doi.org/10.1063/1.2053366

    Article  CAS  Google Scholar 

  9. Iula, A.: Aspect ratio optimization of piezoceramic disks for maximizing electromechanical energy conversion in energy harvesting applications. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT. pp. 679–685 (2020). https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138218

  10. PRAP (Piezoelectric Resonance Analysis Program). TASI Technical Software Inc. (www.tasitechnical.com)

  11. Rybyanets, A.N.: Porous piezoceramics: theory, technology, and properties. IEEE Trans. UFFC. 58(7), 1492 (2011). https://doi.org/10.1109/TUFFC.2011.1968

    Article  Google Scholar 

  12. Smits, J.G.: Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics. IEEE Trans. Sonics Ultrason. SU 23, 393 (1976). https://doi.org/10.1109/T-SU.1976.30898

  13. Rybianets, A. et al.: Accurate evaluation of complex material constants of porous piezoelectric ceramics. In: Proceedings - IEEE Ultrasonics Symposium, vol. 1, no. 4152245, 1533 (2006). DOI: https://doi.org/10.1109/ULTSYM.2006.389

  14. Rybyanets, A.N., et al.: Electric power generations from PZT composite and porous ceramics for energy harvesting devices. Ferroelectrics 484(1), 95 (2015). https://doi.org/10.1080/00150193.2015.1060065

    Article  CAS  Google Scholar 

  15. Shvetsova, N.A., et al.: Microstructure characterization and properties of porous piezoceramics. J. Adv. Dielectr. 12(2), 2160006–2160011 (2022). https://doi.org/10.1142/S2010135X21600067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation [State assignment in the field of scientific activity, Southern Federal University, 2023, Project No. FENW-2023-0015/(GZ0110/23-08-IF)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abramov, P.A., Konstantinova, M.G., Shvetsova, N.A., Shvetsov, I.A., Reznichenko, A.N., Rybyanets, A.N. (2024). Aspect Ratio Optimization of Piezoceramic Piezoelements for Maximizing Energy Conversion in Energy Harvesting Applications. In: Parinov, I.A., Chang, SH., Putri, E.P. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-031-52239-0_49

Download citation

Publish with us

Policies and ethics

Navigation