Negative Electrical Capacitance of the Organic Anticorrosion Films

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2023)

Abstract

Experimental data on the dielectric spectra of the organic films were studied and analyzed. An equivalent circuit consisting of two series-parallel RC- circuits is used for computer modeling and interpretation of experimental data of films with negative electrical capacitance in the high-frequency range. The critical frequency of changing the sign of the electrical capacitance has been determined. The negative electrical capacitance of the films under study is due to two factors: high-frequency processes of strong relaxation polarization with inverse electric field strength and low-frequency processes of hop**-type conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuznetsov, V.: Organic Ingibitors of Corrosion of Metals. Plenum Press, New York and London (1996)

    Book  Google Scholar 

  2. Plotnikov, G.S., Zaitsev, V.B.: Physical Foundations of Molecular Electronics. Moscow State University, Moscow (2000)

    Google Scholar 

  3. Shulman, J., Xue, Y.Y., Tsui, S., Chen, F., Chu, C.W.: General mechanism for negative capacitance phenomena. Phys. Rev. B 80, 134202 (2009)

    Article  Google Scholar 

  4. Yadav, A.K., Nguyen, K.X., Hong, Z., et al.: Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Turik, A.V., Bogatin, A.S.: Non-Debye relaxation and resonance phenomena in dielectric spectra of CaCu3Ti4O12 family functional ceramic materials. Funct. Mater. Lett. (Singapore) 8(4), 155003(1–4) (2015)

    Google Scholar 

  6. Makarov, V.V., Sherman, A.B.: Low-frequency dispersion of the negative dielectric permittivity in C70 films. Phys. Solid State 44(11), 2101–2105 (2002)

    Article  Google Scholar 

  7. Íñiguez, J., Zubko, P., Luk’yanchuk, I., Cano, A.: Antiferroelectric negative capacitance from a structural phase transition in zirconia. Nat. Rev. Mater. 4, 243–256 (2019)

    Google Scholar 

  8. Malvika, C.B., Mummaneni, K.: A review on a negative capacitance field-effect transistor for low-power applications. J. Electron. Mater. 51, 923–937 (2022)

    Article  CAS  Google Scholar 

  9. Alam, M.A., Si, M., Ye, P.D.: A critical review of recent progress on negative capacitance field-effect transistors. Appl. Phys. Lett. 114, 090401(1–5) (2019)

    Google Scholar 

  10. Bogatin, A.S., Sidorenko, E.N., Shpanko, S.P., Kovrigina, S.A., Abdulvakhidov, K.G., Nosatschev, I.O.: Physics and Mechanics of New Materials and Their Applications. In: Parinov, I.A., Chang, S.-H., Kim, Y.-H., Noda, N-A. (eds.) Proceedings of the International Conference, PHENMA 2020, vol. 225, pp. 203–213. Springer, Cham (2021)

    Google Scholar 

  11. Sidorenko, E.N., Shpanko, S.P., Kabirov, Yu.V., Gavrilyatchenko, V.G., Volkov, A.V.: Physics and Mechanics of New Materials and Their Applications. In: Parinov, I.A., Chang, S.-H., Jani, M.A. (eds.) Proceedings of the International Conference, PHENMA 2016, pp. 353–360. Nova Science Publishers, New York (2017)

    Google Scholar 

  12. Shpanko, S.P., et al.: Physics and Mechanics of New Materials and Their Applications. In: Parinov, I.A., Chang, S.-H., Jani, M.A. (eds.) Proceedings of the International Conference, PHENMA 2016, pp. 345–352. Nova Science Publishers, New York (2017)

    Google Scholar 

  13. Shpanko, S.P., Sidorenko, E.N., Kuznetsova, K.G., Abdulvakhidov, D.C., Obuhov, D.S.: Physics and Mechanics of New Materials and Their Applications. In: Parinov, I.A., Chang, S.-H., Kim, Y.-H. (eds.) Proceedings of the International Conference, PHENMA 2018, pp. 13–19. Nova Science Publishers, New York (2019)

    Google Scholar 

  14. Sudar, N.T.: Physical Foundations of Molecular Electronics. St. Petersburg State Polytechnic University, St. Petersburg (2011)

    Google Scholar 

  15. Shpanko, S.P., Sidorenko, E.N., Kuznetsova, L.E., Sosin, E.A.: Physics and Mechanics of New Materials and Their Applications. In: Parinov, I.A., Chang, S.-H., Kim, Y.-H. (eds.) Proceedings of the International Conference, PHENMA 2018, vol. 224, pp. 123–130. Springer, Cham (2019)

    Google Scholar 

  16. Kapralova, V.M.: Physics of Macromolecules. St. Petersburg State. Polytechnic University, St. Petersburg (2012)

    Google Scholar 

  17. Venediktov, V.A., Zvyagin, I.P.: Bulletin of Moscow University, Moscow. Series 3. Physics. Astronomy, vol. 1, pp. 89–92 (2011)

    Google Scholar 

  18. Shpanko, S.P., Sidorenko, E.N., Abdulvakhidov, K.G., Grineva, D.A.: Physics and Mechanics of New Materials and Their Applications. In: Parinov, I.A., Long, B.T., Chang, S.H., Wang, H.Y. (eds.) Proceedings of the International Conference, PHENMA 2019, pp. 137–146. Nova Science Publishers, New York (2020)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of the Russian Federation; the state task in the field of scientific activity No. FENW-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Sidorenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidorenko, E.N., Shpanko, S.P., Shloma, A.V., Rudskaya, A.G., Galatova, A.O. (2024). Negative Electrical Capacitance of the Organic Anticorrosion Films. In: Parinov, I.A., Chang, SH., Putri, E.P. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-031-52239-0_28

Download citation

Publish with us

Policies and ethics

Navigation