Protein-Protein Binding Kinetics by Biolayer Interferometry

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Abstract

The specific kinetics and thermodynamics of protein-protein interactions underlie the molecular mechanisms of cellular functions; hence the characterization of these interaction parameters is central to the quantitative understanding of physiological and pathological processes. Many methods have been developed to study protein-protein interactions, which differ in various features including the interaction detection principle, the sensitivity, whether the method operates in vivo, in vitro, or in silico, the temperature control, the use of labels, immobilization, the amount of sample required, the number of measurements that can be accomplished simultaneously, or the cost. Bio-Layer Interferometry (BLI) is a label-free biophysical method to measure the kinetics of protein-protein interactions. Label-free interaction assays are a broad family of methods that do not require protein modifications (other than immobilization) or labels such as fusions with fluorescent proteins or transactivating domains or chemical modifications like biotinylation or reaction with radionuclides. Besides BLI, other label-free techniques that are widely used for determining protein-protein interactions include surface plasmon resonance (SPR), thermophoresis, and isothermal titration calorimetry (ITC), among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, Wei J, Li P, Heidecker B, Ma W, Varma R, Zhao L-S, Perillat D, Carricato G, Recknor M, Du K, Ho H, Ellis T, Gamez J, Howes M, Phi-Wilson J, Lockard S, Zuk R, Tan H (2009) Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 12:791–800. https://doi.org/10.2174/138620709789104915

    Article  CAS  PubMed  Google Scholar 

  2. Kumaraswamy S, Tobias R (2015) Label-free kinetic analysis of an antibody–antigen interaction using biolayer interferometry. In: Meyerkord CL, Fu H (eds) Protein-Protein Interactions. Springer, New York, pp 165–182

    Chapter  Google Scholar 

  3. Sultana A, Lee JE (2015) Measuring protein-protein and protein-nucleic acid interactions by biolayer interferometry. Curr Protoc Protein Sci 79. https://doi.org/10.1002/0471140864.ps1925s79

  4. Apiyo DO (2017) Biolayer interferometry (Octet) for label-free biomolecular interaction sensing. In: Schasfoort RBM (ed) Handbook of surface plasmon resonance, 2nd edn. The Royal Society of Chemistry, London, pp 356–397

    Chapter  Google Scholar 

  5. Cleaver S, Gardner M, Barlow A, Ferrari E, Soloviev M (2023) Fast protocols for characterizing antibody–peptide binding. In: Cretich M, Gori A (eds) Peptide microarrays. Springer, New York, pp 83–101

    Chapter  Google Scholar 

  6. Nirschl M, Reuter F, Vörös J (2011) Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 1:70–92. https://doi.org/10.3390/bios1030070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdiche Y, Malashock D, Pinkerton A, Pons J (2008) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377:209–217. https://doi.org/10.1016/j.ab.2008.03.035

    Article  CAS  PubMed  Google Scholar 

  8. Yang D, Singh A, Wu H, Kroe-Barrett R (2016) Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics. Anal Biochem 508:78–96. https://doi.org/10.1016/j.ab.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  9. Martin SR, Ramos A, Masino L (2021) Biolayer interferometry: protein–RNA interactions. In: Daviter T, Johnson CM, McLaughlin SH, Williams MA (eds) Protein-ligand interactions. Springer, New York, pp 351–368

    Chapter  Google Scholar 

  10. Weeramange CJ, Fairlamb MS, Singh D, Fenton AW, Swint-Kruse L (2020) The strengths and limitations of using biolayer interferometry to monitor equilibrium titrations of biomolecules. Protein Sci 29:1004–1020. https://doi.org/10.1002/pro.3827

    Article  CAS  Google Scholar 

  11. Ingale J, Wyatt R (2015) Kinetic analysis of monoclonal antibody binding to HIV-1 gp120-derived hyperglycosylated cores. Bio-Protocol 5. https://doi.org/10.21769/BioProtoc.1615

  12. Kol S, Kallehauge TB, Adema S, Hermans P (2015) Development of a VHH-based erythropoietin quantification assay. Mol Biotechnol 57:692–700. https://doi.org/10.1007/s12033-015-9860-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Li W, Luo H, **ong G, Yu Y (2017) Quantitative determination of testosterone levels with biolayer interferometry. Chem Biol Interact 276:141–148. https://doi.org/10.1016/j.cbi.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho SB, Moreira AS, Gomes J, Carrondo MJT, Thornton DJ, Alves PM, Costa J, Peixoto C (2018) A detection and quantification label-free tool to speed up downstream processing of model mucins. PLoS ONE 13:e0190974. https://doi.org/10.1371/journal.pone.0190974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao S, Zheng X, Wu J (2018) A biolayer interferometry-based enzyme-linked aptamer sorbent assay for real-time and highly sensitive detection of PDGF-BB. Biosens Bioelectron 102:57–62. https://doi.org/10.1016/j.bios.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  16. Gao S, Li Q, Zhang S, Sun X, Zheng X, Qian H, Wu J (2022) One-step high-throughput detection of low-abundance biomarker BDNF using a biolayer interferometry-based 3D aptasensor. Biosens Bioelectron 215:114566. https://doi.org/10.1016/j.bios.2022.114566

    Article  CAS  PubMed  Google Scholar 

  17. Dysinger M, King LE (2012) Practical quantitative and kinetic applications of bio-layer interferometry for toxicokinetic analysis of a monoclonal antibody therapeutic. J Immunol Methods 379:30–41. https://doi.org/10.1016/j.jim.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  18. Rao VS, Srinivas K, Su**i GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:1–12. https://doi.org/10.1155/2014/147648

    Article  CAS  Google Scholar 

  19. Biswas P (2018) Modern biophysical approaches to study protein–ligand interactions. Biophys Rev Lett 13:133–155. https://doi.org/10.1142/S1793048018300013

    Article  CAS  Google Scholar 

  20. Carvalho SB, Moleirinho MG, Wheatley D, Welsh J, Gantier R, Alves PM, Peixoto C, Carrondo MJT (2017) Universal label-free in-process quantification of influenza virus-like particles. Biotechnol J 12:1700031. https://doi.org/10.1002/biot.201700031

    Article  CAS  Google Scholar 

  21. Overacker RD, Plitzko B, Loesgen S (2021) Biolayer interferometry provides a robust method for detecting DNA binding small molecules in microbial extracts. Anal Bioanal Chem 413:1159–1171. https://doi.org/10.1007/s00216-020-03079-5

    Article  CAS  PubMed  Google Scholar 

  22. Miczi M, Diós Á, Bozóki B, Tőzsér J, Mótyán JA (2021) Development of a bio-layer interferometry-based protease assay using HIV-1 protease as a model. Viruses 13:1183. https://doi.org/10.3390/v13061183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li A, Harris RJ, Fry BG, Barnes AC (2021) A single-step, high throughput, and highly reproducible method for measuring IgM quantity and avidity directly from fish serum via biolayer interferometry (BLI). Fish Shellfish Immunol 119:231–237. https://doi.org/10.1016/j.fsi.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Wilson JL, Scott IM, McMurry JL (2010) Optical biosensing: kinetics of protein A-IGG binding using biolayer interferometry. Biochem Mol Biol Educ 38:400–407. https://doi.org/10.1002/bmb.20442

    Article  CAS  PubMed  Google Scholar 

  25. Petersen R (2017) Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors 7:49. https://doi.org/10.3390/bios7040049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Desai M, Di R, Fan H (2019) Application of biolayer interferometry (BLI) for studying protein-protein interactions in transcription. J Vis Exp 59687. https://doi.org/10.3791/59687

  27. Chouquet A, Pinto AJ, Hennicke J, Ling WL, Bally I, Schwaigerlehner L, Thielens NM, Kunert R, Reiser J-B (2022) Biophysical characterization of the oligomeric states of recombinant immunoglobulins type-M and their C1q-binding kinetics by biolayer interferometry. Front Bioeng Biotechnol 10:816275. https://doi.org/10.3389/fbioe.2022.816275

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shah NB, Duncan TM (2014) Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J Vis Exp 51383. https://doi.org/10.3791/51383

  29. Ullah SF, Moreira G, Datta SPA, McLamore E, Vanegas D (2022) An experimental framework for develo** point-of-need biosensors: connecting bio-layer interferometry and electrochemical impedance spectroscopy. Biosensors 12:938. https://doi.org/10.3390/bios12110938

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao H, Boyd LF, Schuck P (2017) Measuring protein interactions by optical biosensors. Curr Protoc Protein Sci 88. https://doi.org/10.1002/cpps.31

  31. Noy-Porat T, Alcalay R, Mechaly A, Peretz E, Makdasi E, Rosenfeld R, Mazor O (2021) Characterization of antibody-antigen interactions using biolayer interferometry. STAR Protoc 2:100836. https://doi.org/10.1016/j.xpro.2021.100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dubrow A, Zuniga B, Topo E, Cho J-H (2022) Suppressing nonspecific binding in biolayer interferometry experiments for weak ligand–analyte interactions. ACS Omega 7:9206–9211. https://doi.org/10.1021/acsomega.1c05659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Müller-Esparza H, Osorio-Valeriano M, Steube N, Thanbichler M, Randau L (2020) Bio-layer interferometry analysis of the target binding activity of CRISPR-Cas effector complexes. Front Mol Biosci 7:98. https://doi.org/10.3389/fmolb.2020.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wartchow CA, Podlaski F, Li S, Rowan K, Zhang X, Mark D, Huang K-S (2011) Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des 25:669–676. https://doi.org/10.1007/s10822-011-9439-8

    Article  CAS  PubMed  Google Scholar 

  35. Tambo CS, Tripathi S, Perera BGK, Maly DJ, Bridges AJ, Kiss G, Rubin SM (2023) Biolayer interferometry assay for cyclin-dependent kinase-cyclin association reveals diverse effects of Cdk2 inhibitors on cyclin binding kinetics. ACS Chem Biol 18:431–440. https://doi.org/10.1021/acschembio.3c00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grela P, Li X-P, Horbowicz P, Dźwierzyńska M, Tchórzewski M, Tumer NE (2017) Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus. Sci Rep 7:5608. https://doi.org/10.1038/s41598-017-05675-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beulin DSJ, Radhakrishnan D, Suresh SC, Sadasivan C, Yamaguchi M, Kawabata S, Ponnuraj K (2017) Streptococcus pneumoniae surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. FEBS J 284:3404–3421. https://doi.org/10.1111/febs.14200

    Article  CAS  PubMed  Google Scholar 

  38. Querol-García J, Fernández FJ, Marin AV, Gómez S, Fullà D, Melchor-Tafur C, Franco-Hidalgo V, Albertí S, Juanhuix J, Rodríguez De Córdoba S, Regueiro JR, Vega MC (2017) Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from the gram-positive bacterial pathogen A. vaginae, an immunoevasive factor that interacts with the human C5a anaphylatoxin. Front Microbiol 8:541. https://doi.org/10.3389/fmicb.2017.00541

  39. Fernández FJ, Gómez S, Vega MC (2019) Pathogens’ toolbox to manipulate human complement. Semin Cell Dev Biol 85:98–109. https://doi.org/10.1016/j.semcdb.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  40. Gómez S, Querol-García J, Sánchez-Barrón G, Subias M, González-Alsina À, Franco-Hidalgo V, Albertí S, Rodríguez De Córdoba S, Fernández FJ, Vega MC (2019) The antimicrobials anacardic acid and curcumin are not-competitive inhibitors of gram-positive bacterial pathogenic glyceraldehyde-3-phosphate dehydrogenase by a mechanism unrelated to human C5a anaphylatoxin binding. Front Microbiol 10:326. https://doi.org/10.3389/fmicb.2019.00326

    Article  PubMed  PubMed Central  Google Scholar 

  41. Navas-Yuste S, De La Paz K, Querol-García J, Gómez-Quevedo S, Rodríguez De Córdoba S, Fernández FJ, Vega MC (2023) The structure of Leptospira interrogans GAPDH sheds light into an immunoevasion factor that can target the anaphylatoxin C5a of innate immunity. Front Immunol 14:1190943. https://doi.org/10.3389/fimmu.2023.1190943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lad L, Clancy S, Kovalenko M, Liu C, Hui T, Smith V, Pagratis N (2015) High-throughput kinetic screening of hybridomas to identify high-affinity antibodies using bio-layer interferometry. SLAS Discov 20:498–507. https://doi.org/10.1177/1087057114560123

    Article  CAS  Google Scholar 

  43. Kamat V, Rafique A (2017) Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions. Anal Biochem 536:16–31. https://doi.org/10.1016/j.ab.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  44. Choi JR, Kim MJ, Tae N, Wi TM, Kim S-H, Lee ES, Kim DH (2020) BLI-based functional assay in phage display benefits the development of a PD-L1-targeting therapeutic antibody. Viruses 12:684. https://doi.org/10.3390/v12060684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bell BN, Powell AE, Rodriguez C, Cochran JR, Kim PS (2021) Neutralizing antibodies targeting the SARS-CoV-2 receptor binding domain isolated from a naïve human antibody library. Protein Sci 30:716–727. https://doi.org/10.1002/pro.4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sim DS, Shukla M, Mallari CR, Fernández JA, Xu X, Schneider D, Bauzon M, Hermiston TW, Mosnier LO (2023) Selective modulation of activated protein C activities by a nonactive site–targeting nanobody library. Blood Adv 7:3036–3048. https://doi.org/10.1182/bloodadvances.2022008740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Y-L, Lin J-J, Ma H, Zhong N, **e X-X, Yang Y, Zheng P, Zhang L-J, ** T, Cao M-J (2022) Screening and characterization of shark-derived VNARs against SARS-CoV-2 spike RBD protein. Int J Mol Sci 23:10904. https://doi.org/10.3390/ijms231810904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Avsar SY, Kapinos LE, Schoenenberger C-A, Schertler GFX, Mühle J, Meger B, Lim RYH, Ostermaier MK, Lesca E, Palivan CG (2020) Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding. Phys Chem Chem Phys 22:24086–24096. https://doi.org/10.1039/D0CP01464H

    Article  CAS  PubMed  Google Scholar 

  49. Podolnikova NP, Hlavackova M, Wu Y, Yakubenko VP, Faust J, Balabiyev A, Wang X, Ugarova TP (2019) Interaction between the integrin Mac-1 and signal regulatory protein α (SIRPα) mediates fusion in heterologous cells. J Biol Chem 294:7833–7849. https://doi.org/10.1074/jbc.RA118.006314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dorgham K, Murail S, Tuffery P, Savier E, Bravo J, Rebollo A (2022) Binding and kinetic analysis of human protein phosphatase PP2A interactions with caspase 9 protein and the interfering peptide C9h. Pharmaceutics 14:2055. https://doi.org/10.3390/pharmaceutics14102055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pinkaew D, Martinez-Hackert E, Jia W, King MD, Miao F, Enger NR, Silakit R, Ramana K, Chen S-Y, Fujise K (2022) Fortilin interacts with TGF-β1 and prevents TGF-β receptor activation. Commun Biol 5:157. https://doi.org/10.1038/s42003-022-03112-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morla S, Deguchi H, Zilberman-Rudenko J, Gruber A, McCarty OJT, Srivastava P, Gailani D, Griffin JH (2022) Skeletal muscle myosin promotes coagulation by binding factor XI via its A3 domain and enhancing thrombin-induced factor XI activation. J Biol Chem 298:101567. https://doi.org/10.1016/j.jbc.2022.101567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gong SY, Chatterjee D, Richard J, Prévost J, Tauzin A, Gasser R, Bo Y, Vézina D, Goyette G, Gendron-Lepage G, Medjahed H, Roger M, Côté M, Finzi A (2021) Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology 563:134–145. https://doi.org/10.1016/j.virol.2021.09.001

    Article  CAS  PubMed  Google Scholar 

  54. Vogel M, Augusto G, Chang X, Liu X, Speiser D, Mohsen MO, Bachmann MF (2022) Molecular definition of severe acute respiratory syndrome coronavirus 2 receptor-binding domain mutations: receptor affinity versus neutralization of receptor interaction. Allergy 77:143–149. https://doi.org/10.1111/all.15002

    Article  CAS  PubMed  Google Scholar 

  55. Simpson JD, Ray A, Marcon C, Dos Santos NR, Dorrazehi GM, Durlet K, Koehler M, Alsteens D (2023) Single-molecule analysis of SARS-CoV-2 binding to C-type lectin receptors. Nano Lett 23:1496–1504. https://doi.org/10.1021/acs.nanolett.2c04931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, Fogarty CA, Barros EP, Taylor BC, McLellan JS, Fadda E, Amaro RE (2020) Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci 6:1722–1734. https://doi.org/10.1021/acscentsci.0c01056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou W, Lin S, Chen R, Liu J, Li Y (2018) Characterization of antibody-C1q interactions by Biolayer Interferometry. Anal Biochem 549:143–148. https://doi.org/10.1016/j.ab.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  58. Mostafa M, Elsadek NE, Emam SE, Ando H, Shimizu T, Abdelkader H, Ishima Y, Aly UF, Sarhan HA, Ishida T (2022) Using bio-layer interferometry to evaluate anti-PEG antibody-mediated complement activation. Biol Pharm Bull 45:129–135. https://doi.org/10.1248/bpb.b21-00772

    Article  CAS  PubMed  Google Scholar 

  59. Kojima T, Nakane A, Zhu B, Alfi A, Nakano H (2019) A simple, real-time assay of horseradish peroxidase using biolayer interferometry. Biosci Biotechnol Biochem 83:1822–1828. https://doi.org/10.1080/09168451.2019.1621156

    Article  CAS  PubMed  Google Scholar 

  60. De Silva ARI, Shrestha S, Page RC (2023) Real-time bio-layer interferometry ubiquitination assays as alternatives to western blotting. Anal Biochem 679:115296. https://doi.org/10.1016/j.ab.2023.115296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades-FEDER grants RTI2018-102242-BI00 (MCV), the Spanish Ministerio de Ciencia e Innovación-Recovery, Transformation and Resilience Plan (PRTR) grant PDC2022-133713-I00 (MCV), grant S2022/BMD-7278 of the Regional Government of Madrid (MCV), the European Commission – NextGenerationEU through CSIC’s Global Health Platform (“PTI Salud Global”) (SGL2103020) (MCV), and the CSIC Special Intramural Grant PIE201620E064 (MCV). It was additionally supported by the Research Network on Complement in Health and Disease (RED2022-134750-T). KdlP was supported by an Industrial PhD grant (IND2018-010094) awarded by the Spanish Ministerio de Economía y Competitividad. JSL acknowledges the support of the PhD program in Molecular Biosciences of the Universidad Autónoma de Madrid (UAM) and the Ministry of Education, Culture and Sports of Spain (FPU Grant 17/06090). KdlP acknowledges the support of the PhD program in Biochemistry, Molecular Biology and Biomedicine of the Universidad Complutense de Madrid (UCM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos-López, J., Gómez, S., Fernández, F.J., Vega, M.C. (2024). Protein-Protein Binding Kinetics by Biolayer Interferometry. In: Vega, M.C., Fernández, F.J. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-52193-5_6

Download citation

Publish with us

Policies and ethics

Navigation