Erfonium: A Hooke Atom with Soft Interaction Potential

  • Conference paper
  • First Online:
Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology (QSCP 2022)

Abstract

Properties of erfonium, a Hooke atom with the Coulomb interaction potential \(1/ r\) replaced by a non-singular \(\textrm{erf}(\mu \,r)/ r\) potential are investigated. The structure of the Hooke atom potential and properties of its energy spectrum, relative to the ones of the spherical harmonic oscillator and of harmonium, are analyzed. It is shown, that at a certain value of \(\mu \) the system changes its behavior from a harmonium-like regime to a harmonic-oscillator-like regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gori-Giorgi P, Savin A (2006) Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence. Phys Rev A 73:032506. https://doi.org/10.1103/PhysRevA.73.032506

    Article  CAS  Google Scholar 

  2. Savin A (2011) Correcting model energies by numerically integrating along an adiabatic connection and a link to density functional approximations. J Chem Phys 134:214108. https://doi.org/10.1063/1.3592782

    Article  CAS  PubMed  Google Scholar 

  3. Savin A (2020) Models and corrections: range separation for electronic interaction—Lessons from density functional theory. J Chem Phys 153:160901. https://doi.org/10.1063/5.0028060

  4. Savin A, Karwowski J (2023) Correcting models with long-range electron interaction using generalized cusp conditions. J Phys Chem A 127:1377–1385. https://doi.org/10.1021/acs.jpca.2c08426

    Article  CAS  PubMed  Google Scholar 

  5. González-Espinoza CE, Ayers PW, Karwowski J, Savin A (2016) Smooth models for the Coulomb potential. Theor Chem Acc 135:256. https://doi.org/10.1007/s00214-016-2007-5

  6. Pernal K, Hapka M (2022) Range-separated multiconfigurational density functional theory methods. WIREs Comput Mol Sci 12:e1566. https://doi.org/10.1002/wcms.1566

    Article  CAS  Google Scholar 

  7. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale (The calculation of optical and electrostatic grid potential). Ann Phys (Leipzig) 369:253–287. https://doi.org/10.1002/andp.19213690304

    Article  Google Scholar 

  8. Demyanov GS, Levashov PR (2022) Systematic derivation of angular-averaged ewald potential. J. Phys. A: Math. Theor. 55:385202. https://doi.org/10.1088/1751-8121/ac870b

  9. Lucha W, Rupprecht H, Schoeberl FF (1992) Significance of relativistic wave equations for bound states. Phys Rev D 46:1088–1095. https://doi.org/10.1103/PhysRevD.46.1088

    Article  CAS  Google Scholar 

  10. Plamondon R (2018) General relativity: An erfc metric. Results Phys 9:456–462. https://doi.org/10.1016/j.rinp.2018.02.035

  11. Kestner NR, Sinanoglu O (1962) Study of electron correlation in helium-like systems using an exactly soluble model. Phys Rev 128:2687. https://doi.org/10.1103/PhysRev.128.2687

    Article  Google Scholar 

  12. Taut M (1993) Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem. Phys Rev A 48:3561–3566. https://doi.org/10.1103/PhysRevA.48.3561

    Article  CAS  PubMed  Google Scholar 

  13. Mandal S, Mukherjee PK, Diercksen GHF (2003) Two electrons in a harmonic potential: An approximate analytical solution. J Phys B: At Mol Opt Phys 36:4483–4494. https://doi.org/10.1088/0953-4075/36/22/009

  14. Karwowski J, Cyrnek L (2004) Harmonium. Ann Phys (Leipzig) 13:181–193. https://doi.org/10.1002/andp.200310071

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Henryk A. Witek (National Chiao Tung University, Hsinchu, Taiwan) for his constructive remarks and for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Karwowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karwowski, J., Savin, A. (2024). Erfonium: A Hooke Atom with Soft Interaction Potential. In: Grabowski, I., Słowik, K., Maruani, J., Brändas, E.J. (eds) Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology. QSCP 2022. Progress in Theoretical Chemistry and Physics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-031-52078-5_5

Download citation

Publish with us

Policies and ethics

Navigation