Genetic Susceptibility to Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer

Abstract

Prostate cancer (PCa) is the second most diagnosed cancer type globally and is one of the leading causes of death in men. Genetic susceptibility plays a significant role in PCa development with a reported heritability of 57%. Mutations in the different DNA damage repair (DDR) genes (BRCA1, BRCA2, CHEK2, ATM, and PALB2) and in DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) are hallmark of hereditary prostate cancer (HPCa) and are included in National Comprehensive Cancer Network (NCCN) guidelines for PCa germline genetic testing. In addition to rare high-risk mutations in susceptibility genes, polygenetic inheritance of low-risk germline variants in the form of single-nucleotide polymorphisms (SNPs) may be utilized to distinguish an individual’s susceptibility to PCa onset and progression. Over the past decade, the number of detected variants has increased to 269, due to the genome-wide association studies (GWAS). The large number of identified variants led to the development of polygenic risk scores (PRS) that aggregates common PCa-associated genetic variants into a single measure. The incorporation of diverse genetic analyses and PRS is highly anticipated to those individuals with positive PCa family history and may lead to improvements in clinical outcomes for this population through early prevention screening efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S (2022) Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules 27:5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY et al (2018) Drug repositioning for effective prostate cancer treatment. Front Physiol 9:500

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T et al (2016) Familial risk and heritability of cancer among twins in Nordic countries. JAMA 315:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heidegger I, Tsaur I, Borgmann H, Surcel C, Kretschmer A, Mathieu R et al (2019) Hereditary prostate cancer – primetime for genetic testing? Cancer Treat Rev 81:101927

    Article  CAS  PubMed  Google Scholar 

  5. Rebbeck TR (2017) Prostate cancer genetics: variation by race, ethnicity, and geography. Semin Radiat Oncol 27:3–10

    Article  PubMed  Google Scholar 

  6. Bratt O (2000) Hereditary prostate cancer. BJU Int 85:588–598

    Article  CAS  PubMed  Google Scholar 

  7. Ni Raghallaigh H, Eeles R (2022) Genetic predisposition to prostate cancer: an update. Familial Cancer 21:101–114

    Article  PubMed  Google Scholar 

  8. Das S, Salami SS, Spratt DE, Kaffenberger SD, Jacobs MF, Morgan TM (2019) Bringing prostate cancer germline genetics into clinical practice. J Urol 202:223–230

    Article  PubMed  Google Scholar 

  9. Zhen JT, Syed J, Nguyen KA, Leapman MS, Agarwal N, Brierley K et al (2018) Genetic testing for hereditary prostate cancer: current status and limitations. Cancer 124:3105–3117

    Article  CAS  PubMed  Google Scholar 

  10. Khan HM, Cheng HH (2022) Germline genetics of prostate cancer. Prostate 82(Suppl 1):S3–S12

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kornberg Z, Chou J, Feng FY, Ryan CJ (2018) Prostate cancer in the era of “Omic” medicine: recognizing the importance of DNA damage repair pathways. Ann Transl Med 6:161

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huen MSY, Sy SMH, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11:138–148

    Article  CAS  PubMed  Google Scholar 

  13. Sy SM-H, Huen MSY, Zhu Y, Chen J (2009) PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem 284:18302–18310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281:30305–30309

    Article  CAS  PubMed  Google Scholar 

  15. Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A (2020) Mismatch repair pathway, genome stability and cancer. Front Mol Biosci 7:122

    Article  PubMed  PubMed Central  Google Scholar 

  16. Modrich P (2016) Mechanisms in E. coli and human mismatch repair (Nobel lecture). Angew Chem Int Ed Engl 55:8490–8501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reilly NM, Novara L, Di Nicolantonio F, Bardelli A (2019) Exploiting DNA repair defects in colorectal cancer. Mol Oncol 13:681–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takayama K-I (2019) Splicing factors have an essential role in prostate cancer progression and androgen receptor Signaling. Biomol Ther 9:131

    Google Scholar 

  20. Jividen K, Kedzierska KZ, Yang C-S, Szlachta K, Ratan A, Paschal BM (2018) Genomic analysis of DNA repair genes and androgen signaling in prostate cancer. BMC Cancer 18:960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakraborty G, Gupta K, Kyprianou N (2023) Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nat Commun 14:567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCann JJ, Vasilevskaya IA, McNair C, Gallagher P, Neupane NP, de Leeuw R et al (2022) Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene 41:444–458

    Article  CAS  PubMed  Google Scholar 

  23. Robinson D, Van Allen EM, Wu Y-M, Schultz N, Lonigro RJ, Mosquera J-M et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nicolosi P, Ledet E, Yang S, Michalski S, Freschi B, O’Leary E et al (2019) Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol 5:523–528

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramus SJ, Gayther SA (2009) The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol Oncol 3:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518

    Article  CAS  PubMed  Google Scholar 

  27. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272

    Article  CAS  PubMed  Google Scholar 

  28. Varol U, Kucukzeybek Y, Alacacioglu A, Somali I, Altun Z, Aktas S et al (2018) BRCA genes: BRCA 1 and BRCA 2. J BUON 23:862–866

    PubMed  Google Scholar 

  29. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  CAS  PubMed  Google Scholar 

  30. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  CAS  PubMed  Google Scholar 

  31. Petrucelli N, Daly MB, Pal T (1993) BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW et al (eds) GeneReviews® [Internet]. University of Washington, Seattle (WA). [cited 2023 Aug 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1247/

    Google Scholar 

  32. Casaubon JT, Kashyap S, Regan J-P (2023) BRCA1 and BRCA2 mutations. StatPearls [internet]. StatPearls Publishing, Treasure Island (FL). [cited 2023 Aug 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK470239/

    Google Scholar 

  33. Silvestri V, Leslie G, Barnes DR, the CIMBA Group, Agnarsson BA, Aittomäki K et al (2020) Characterization of the cancer Spectrum in men with germline BRCA1 and BRCA2 pathogenic variants: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). JAMA Oncol 6:1218

    Article  PubMed  Google Scholar 

  34. Chen S, Iversen ES, Friebel T, Finkelstein D, Weber BL, Eisen A et al (2006) Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J Clin Oncol 24:863–871

    Article  CAS  PubMed  Google Scholar 

  35. Oh M, Alkhushaym N, Fallatah S, Althagafi A, Aljadeed R, Alsowaida Y et al (2019) The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate 79:880–895

    Article  CAS  PubMed  Google Scholar 

  36. Fachal L, Gómez-Caamaño A, Celeiro-Muñoz C, Peleteiro P, Blanco A, Carballo A et al (2011) BRCA1 mutations do not increase prostate cancer risk: results from a meta-analysis including new data: BRCA1 mutations do not increase prostate cancer risk. Prostate 71:1768–1779

    Article  CAS  PubMed  Google Scholar 

  37. Nikanjam M, Kato S, Kurzrock R (2022) Liquid biopsy: current technology and clinical applications. J Hematol Oncol 15:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pessoa LS, Heringer M, Ferrer VP (2020) ctDNA as a cancer biomarker: a broad overview. Crit Rev Oncol Hematol 155:103109

    Article  PubMed  Google Scholar 

  39. Barbany G, Arthur C, Liedén A, Nordenskjöld M, Rosenquist R, Tesi B et al (2019) Cell-free tumour DNA testing for early detection of cancer – a potential future tool. J Intern Med 286(2):118–136. joim.12897

    Article  CAS  PubMed  Google Scholar 

  40. Hankey BF, Feuer EJ, Clegg LX, Hayes RB, Legler JM, Prorok PC et al (1999) Cancer surveillance series: interpreting trends in prostate cancer part I: evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates. JNCI J Natl Cancer Institute 91:1017–1024

    Article  CAS  Google Scholar 

  41. Delongchamps NB, Singh A, Haas GP (2006) The role of prevalence in the diagnosis of prostate cancer. Cancer Control 13:158–168

    Article  PubMed  Google Scholar 

  42. Lukashchuk N, Barnicle A, Adelman CA, Armenia J, Kang J, Barrett JC et al (2023) Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front Oncol 13:1162644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lau E, McCoy P, Reeves F, Chow K, Clarkson M, Kwan EM et al (2020) Detection of ctDNA in plasma of patients with clinically localised prostate cancer is associated with rapid disease progression. Genome Med 12:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M et al (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. JCO. 31:1748–1757

    Article  CAS  Google Scholar 

  45. Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast cancer linkage consortium. Am J Hum Genet 56:265–271

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N et al (2011) BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 105:1230–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J et al (2020) Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Eur Urol 77:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brandão A, Paulo P, Teixeira MR (2020) Hereditary predisposition to prostate cancer: from genetics to clinical implications. Int J Mol Sci 21:5036

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castro E, Goh CL, Eeles RA (2013) Prostate cancer screening in BRCA and lynch syndrome mutation carriers. Am Soc Clin Oncol Educ Book

    Google Scholar 

  50. Domrazek K, Pawłowski K, Jurka P (2023) Usefulness of BRCA and ctDNA as prostate cancer biomarkers: a meta-analysis. Cancers (Basel) 15:3452

    Article  CAS  PubMed  Google Scholar 

  51. Ahn J, Urist M, Prives C (2004) The Chk2 protein kinase. DNA Repair (Amst) 3:1039–1047

    Article  CAS  PubMed  Google Scholar 

  52. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT et al (2004) Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24:708–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu C, Zhang S, Gao X, Gao X, Xu X, Lv Y et al (2012) Roles of Kruppel-associated box (KRAB)-associated co-repressor KAP1 Ser-473 phosphorylation in DNA damage response. J Biol Chem 287:18937–18952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirao A, Cheung A, Duncan G, Girard P-M, Elia AJ, Wakeham A et al (2002) Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol 22:6521–6532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59

    Article  CAS  PubMed  Google Scholar 

  57. Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O et al (2002) A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 71:432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cybulski C, Górski B, Huzarski T, Masojć B, Mierzejewski M, Debniak T et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cybulski C, Huzarski T, Górski B, Masojć B, Mierzejewski M, Debniak T et al (2004) A novel founder CHEK2 mutation is associated with increased prostate cancer risk. Cancer Res 64:2677–2679

    Article  CAS  PubMed  Google Scholar 

  60. Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK et al (2003) Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 72:270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seppälä EH, Ikonen T, Mononen N, Autio V, Rökman A, Matikainen MP et al (2003) CHEK2 variants associate with hereditary prostate cancer. Br J Cancer 89:1966–1970

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hale V, Weischer M, Park JY (2014) CHEK2 (∗) 1100delC mutation and risk of prostate cancer. Prostate Cancer 2014:294575

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang Y, Dai B, Ye D (2015) CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med 8:15708–15715

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Alorjani M, Aburub M, Al-Trad B, Hamad MA, AbuAlarja M, Bashir SA et al (2023) The prevalence of CHEK1 and CHEK2 mutations in prostate cancer: a retrospective cohort study. Med Arch 77:8–12

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kirchner K, Gamulin M, Kulis T, Sievers B, Kastelan Z, Lessel D (2022) Comprehensive clinical and genetic analysis of CHEK2 in Croatian men with prostate cancer. Genes (Basel) 13:1955

    Article  CAS  PubMed  Google Scholar 

  67. Mavrou A, Tsangaris GT, Roma E, Kolialexi A (2008) The ATM gene and ataxia telangiectasia. Anticancer Res 28:401–405

    CAS  PubMed  Google Scholar 

  68. McKinnon PJ (2004) ATM and ataxia telangiectasia. EMBO Rep 5:772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66:801–817

    Article  CAS  PubMed  Google Scholar 

  70. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toledo LI, Altmeyer M, Rask M-B, Lukas C, Larsen DH, Povlsen LK et al (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103

    Article  CAS  PubMed  Google Scholar 

  72. Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Bétous R et al (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27:1610–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162

    Article  CAS  PubMed  Google Scholar 

  74. Chiu Y-T, Liu J, Tang K, Wong Y-C, Khanna KK, Ling M-T (2012) Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells. Sarkar FH, editor. PLoS One 7:e51108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Karlsson Q, Brook MN, Dadaev T, Wakerell S, Saunders EJ, Muir K et al (2021) Rare germline variants in ATM predispose to prostate cancer: a PRACTICAL consortium study. Eur Urol Oncol 4:570–579

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wokołorczyk D, Kluźniak W, Huzarski T, Gronwald J, Szymiczek A, Rusak B et al (2020) Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer 147:2793–2800

    Article  PubMed  Google Scholar 

  77. The UKGPCS Collaborators, Leongamornlert D, Saunders E, Dadaev T, Tymrakiewicz M, Goh C et al (2014) Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 110:1663–1672

    Article  PubMed Central  Google Scholar 

  78. The Profile Study, Australian Prostate Cancer BioResource (APCB), The IMPACT Study, Canary PASS Investigators, Breast and Prostate Cancer Cohort Consortium (BPC3), The PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium et al (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50:928–936

    Article  Google Scholar 

  79. Lozano R, Castro E, Aragón IM, Cendón Y, Cattrini C, López-Casas PP et al (2021) Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer 124:552–563

    Article  CAS  PubMed  Google Scholar 

  80. Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E et al (2022) An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Onc 6:43

    Article  Google Scholar 

  81. Grochot R, Carreira S, Miranda S, Figueiredo I, Bertan C, Rekowski J et al (2023) Germline ATM mutations detected by somatic DNA sequencing in lethal prostate cancer. Eur Urol Open Sci 52:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vietri MT, Caliendo G, Schiano C, Casamassimi A, Molinari AM, Napoli C et al (2015) Analysis of PALB2 in a cohort of Italian breast cancer patients: identification of a novel PALB2 truncating mutation. Familial Cancer 14:341–348

    Article  CAS  PubMed  Google Scholar 

  83. Erkko H, **a B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A et al (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319

    Article  CAS  PubMed  Google Scholar 

  84. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167

    Article  CAS  PubMed  Google Scholar 

  85. Tischkowitz M, **a B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci U S A 104:6788–6793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N et al (2009) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137:1183–1186

    Article  PubMed  Google Scholar 

  88. Fewings E, Larionov A, Redman J, Goldgraben MA, Scarth J, Richardson S et al (2018) Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. Lancet Gastroenterol Hepatol 3:489–498

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huang K-L, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C et al (2018) Pathogenic germline variants in 10,389 adult cancers. Cell 173:355–370.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sahasrabudhe R, Lott P, Bohorquez M, Toal T, Estrada AP, Suarez JJ et al (2017) Germline mutations in PALB2, BRCA1, and RAD51C, which regulate DNA recombination repair, in patients with gastric cancer. Gastroenterology 152:983–986.e6

    Article  CAS  PubMed  Google Scholar 

  91. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B et al (2020) Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. JCO 38:674–685

    Article  CAS  Google Scholar 

  92. Pakkanen S, Wahlfors T, Siltanen S, Patrikainen M, Matikainen MP, Tammela TLJ et al (2009) PALB2 variants in hereditary and unselected Finnish prostate cancer cases. J Negat Results Biomed 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tischkowitz M, Sabbaghian N, Ray AM, Lange EM, Foulkes WD, Cooney KA (2008) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer. Prostate 68:675–678

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S et al (2020) Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382:2091–2102

    Article  PubMed  Google Scholar 

  95. Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S et al (2017) Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 7:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Horak P, Weischenfeldt J, von Amsberg G, Beyer B, Schütte A, Uhrig S et al (2019) Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud 5:a003657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barrow E, Robinson L, Alduaij W, Shenton A, Clancy T, Lalloo F et al (2009) Cumulative lifetime incidence of extracolonic cancers in lynch syndrome: a report of 121 families with proven mutations. Clin Genet 75:141–149

    Article  CAS  PubMed  Google Scholar 

  98. Ten Broeke SW, van der Klift HM, Tops CMJ, Aretz S, Bernstein I, Buchanan DD et al (2018) Cancer risks for PMS2-associated lynch syndrome. J Clin Oncol 36:2961–2968

    Article  PubMed  PubMed Central  Google Scholar 

  99. Møller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Gareth Evans D et al (2018) Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the prospective lynch syndrome database. Gut 67:1306–1316

    Article  PubMed  Google Scholar 

  100. Vietri MT, D’Elia G, Caliendo G, Casamassimi A, Federico A, Passariello L et al (2021) Prevalence of mutations in BRCA and MMR genes in patients affected with hereditary endometrial cancer. Med Oncol 38:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cohen SA, Leininger A (2014) The genetic basis of lynch syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7:147–158

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ryan S, Jenkins MA, Win AK (2014) Risk of prostate cancer in lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 23:437–449

    Article  CAS  Google Scholar 

  103. Athie A, Arce-Gallego S, Gonzalez M, Morales-Barrera R, Suarez C, Casals Galobart T et al (2019) Targeting DNA repair defects for precision medicine in prostate cancer. Curr Oncol Rep 21:42

    Article  PubMed  Google Scholar 

  104. Dominguez-Valentin M, Sampson JR, Seppälä TT, Ten Broeke SW, Plazzer J-P, Nakken S et al (2020) Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective lynch syndrome database. Genet Med 22:15–25

    Article  CAS  PubMed  Google Scholar 

  105. Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder E, Dietmaier W et al (2012) Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol 30:4409–4415

    Article  PubMed  Google Scholar 

  106. Sedhom R, Antonarakis ES (2019) Clinical implications of mismatch repair deficiency in prostate cancer. Future Oncol 15:2395–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cheng HH, Sokolova AO, Schaeffer EM, Small EJ, Higano CS (2019) Germline and somatic mutations in prostate cancer for the clinician. J Natl Compr Cancer Netw 17:515–521

    Article  CAS  Google Scholar 

  108. Pilarski R (2019) The role of BRCA testing in hereditary pancreatic and prostate cancer families. Am Soc Clin Oncol Educ Book 39:79–86

    Article  PubMed  Google Scholar 

  109. Haraldsdottir S, Hampel H, Wei L, Wu C, Frankel W, Bekaii-Saab T et al (2014) Prostate cancer incidence in males with lynch syndrome. Genet Med 16:553–557

    Article  PubMed  PubMed Central  Google Scholar 

  110. Allemailem KS, Almatroudi A, Alrumaihi F, Makki Almansour N, Aldakheel FM, Rather RA et al (2021) Single nucleotide polymorphisms (SNPs) in prostate cancer: its implications in diagnostics and therapeutics. Am J Transl Res 13:3868–3889

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  CAS  PubMed  Google Scholar 

  112. Steri M, Idda ML, Whalen MB, Orrù V (2018) Genetic variants in mRNA untranslated regions. Wiley Interdiscip Rev RNA 9:e1474

    Article  PubMed  PubMed Central  Google Scholar 

  113. Farashi S, Kryza T, Clements J, Batra J (2019) Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat Rev Cancer 19:46–59

    Article  CAS  PubMed  Google Scholar 

  114. Beuten J, Gelfond JAL, Franke JL, Weldon KS, Crandall AC, Johnson-Pais TL et al (2009) Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomark Prev 18:1869–1880

    Article  CAS  Google Scholar 

  115. Jones DZ, Ragin C, Kidd NC, Flores-Obando RE, Jackson M, McFarlane-Anderson N et al (2013) The impact of genetic variants in inflammatory-related genes on prostate cancer risk among men of African descent: a case control study. Hered Cancer Clin Pract 11:19

    Article  PubMed  PubMed Central  Google Scholar 

  116. Santric V, Dragicevic D, Matic M, Djokic M, Pljesa-Ercegovac M, Radic T et al (2021) Polymorphisms in genes encoding glutathione transferase pi and glutathione transferase omega influence prostate cancer risk and prognosis. Front Mol Biosci 8:620690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Djokic M, Radic T, Santric V, Dragicevic D, Suvakov S, Mihailovic S et al (2022) The Association of Polymorphisms in genes encoding antioxidant enzymes GPX1 (rs1050450), SOD2 (rs4880) and transcriptional factor Nrf2 (rs6721961) with the risk and development of prostate cancer. Medicina (Kaunas) 58:1414

    Article  PubMed  Google Scholar 

  118. Benafif S, Kote-Jarai Z, Eeles RA, PRACTICAL Consortium (2018) A review of prostate cancer genome-wide association studies (GWAS). Cancer Epidemiol Biomark Prev 27:845–857

    Article  Google Scholar 

  119. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E et al (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D896–D901

    Article  CAS  PubMed  Google Scholar 

  120. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637

    Article  CAS  PubMed  Google Scholar 

  121. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A et al (2021) Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet 53:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Helfand BT, Loeb S, Hu Q, Cooper PR, Roehl KA, McGuire BB et al (2013) Personalized prostate specific antigen testing using genetic variants may reduce unnecessary prostate biopsies. J Urol 189:1697–1701

    Article  PubMed  PubMed Central  Google Scholar 

  123. Plym A, Penney KL, Kalia S, Kraft P, Conti DV, Haiman C et al (2022) Evaluation of a multiethnic polygenic risk score model for prostate cancer. J Natl Cancer Inst 114:771–774

    Article  PubMed  Google Scholar 

  124. Macinnis RJ, Antoniou AC, Eeles RA, Severi G, Al Olama AA, McGuffog L et al (2011) A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact. Genet Epidemiol 35:549–556

    PubMed  PubMed Central  Google Scholar 

  125. Grönberg H, Adolfsson J, Aly M, Nordström T, Wiklund P, Brandberg Y et al (2015) Prostate cancer screening in men aged 50-69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol 16:1667–1676

    Article  PubMed  Google Scholar 

  126. Siltari A, Lönnerbro R, Pang K, Shiranov K, Asiimwe A, Evans-Axelsson S et al (2023) How well do polygenic risk scores identify men at high risk for prostate cancer? Systematic review and meta-analysis. Clin Genitourin Cancer 21:316.e1–316.e11

    Article  PubMed  Google Scholar 

  127. Benafif S, Ni Raghallaigh H, McGrowder E, Saunders EJ, Brook MN, Saya S et al (2022) The BARCODE1 pilot: a feasibility study of using germline single nucleotide polymorphisms to target prostate cancer screening. BJU Int 129:325–336

    Article  CAS  PubMed  Google Scholar 

  128. Sipeky C, Talala KM, Tammela TLJ, Taari K, Auvinen A, Schleutker J (2020) Prostate cancer risk prediction using a polygenic risk score. Sci Rep 10:17075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Black MH, Li S, LaDuca H, Lo M-T, Chen J, Hoiness R et al (2020) Validation of a prostate cancer polygenic risk score. Prostate 80:1314–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Benafif S, Eeles R (2016) Genetic predisposition to prostate cancer. Br Med Bull 120:75–89

    Article  CAS  PubMed  Google Scholar 

  131. Dias A, Kote-Jarai Z, Mikropoulos C, Eeles R (2018) Prostate cancer germline variations and implications for screening and treatment. Cold Spring Harb Perspect Med 8:a030379

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zhu X, Albertsen PC, Andriole GL, Roobol MJ, Schröder FH, Vickers AJ (2012) Risk-based prostate cancer screening. Eur Urol 61:652–661

    Article  PubMed  Google Scholar 

  133. Du Z, Hopp H, Ingles SA, Huff C, Sheng X, Weaver B et al (2020) A genome-wide association study of prostate cancer in Latinos. Int J Cancer 146:1819–1826

    Article  CAS  PubMed  Google Scholar 

  134. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ et al (2019) Author correction: association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 51:363

    Article  CAS  PubMed  Google Scholar 

  135. Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F et al (2018) Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell 174:564–575.e18

    Article  CAS  PubMed  Google Scholar 

  136. Matejcic M, Saunders EJ, Dadaev T, Brook MN, Wang K, Sheng X et al (2018) Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nat Commun 9:4616

    Article  PubMed  PubMed Central  Google Scholar 

  137. Guo H, Ahmed M, Zhang F, Yao CQ, Li S, Liang Y et al (2016) Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat Genet 48:1142–1150

    Article  CAS  PubMed  Google Scholar 

  138. Luo Z, Rhie SK, Lay FD, Farnham PJ (2017) A prostate cancer risk element functions as a repressive loop that regulates HOXA13. Cell Rep 21:1411–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Spisák S, Lawrenson K, Fu Y, Csabai I, Cottman RT, Seo J-H et al (2015) CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants. Nat Med 21:1357–1363

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gao P, **a J-H, Sipeky C, Dong X-M, Zhang Q, Yang Y et al (2018) Biology and clinical implications of the 19q13 aggressive prostate cancer susceptibility locus. Cell 174:576–589.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gallagher MD, Chen-Plotkin AS (2018) The post-GWAS era: from association to function. Am J Hum Genet 102:717–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502:499–506

    Article  PubMed  Google Scholar 

  143. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Giambartolomei C, Seo J-H, Schwarz T, Freund MK, Johnson RD, Spisak S et al (2021) H3K27ac HiChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility. Am J Hum Genet 108:2284–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mills MC, Rahal C (2020) The GWAS diversity monitor tracks diversity by disease in real time. Nat Genet 52:242–243

    Article  CAS  PubMed  Google Scholar 

  146. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  147. Leon AF, Chau CH, Price DK, Figg WD (2021) Diversity on demand: multi-ancestry meta-analysis improves genetic risk prediction in prostate cancer. Am J Clin Exp Urol 9:189–193

    PubMed  PubMed Central  Google Scholar 

  148. Zaitlen N, Paşaniuc B, Gur T, Ziv E, Halperin E (2010) Leveraging genetic variability across populations for the identification of causal variants. Am J Hum Genet 86:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu J, Sun J, Kader AK, Lindström S, Wiklund F, Hsu F-C et al (2009) Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate 69:1565–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kader AK, Sun J, Reck BH, Newcombe PJ, Kim S-T, Hsu F-C et al (2012) Potential impact of adding genetic markers to clinical parameters in predicting prostate biopsy outcomes in men following an initial negative biopsy: findings from the REDUCE trial. Eur Urol 62:953–961

    Article  PubMed  PubMed Central  Google Scholar 

  151. Na R, Labbate C, Yu H, Shi Z, Fantus RJ, Wang C-H et al (2019) Single-nucleotide polymorphism-based genetic risk score and patient age at prostate cancer diagnosis. JAMA Netw Open 2:e1918145

    Article  PubMed  PubMed Central  Google Scholar 

  152. Callender T, Emberton M, Morris S, Eeles R, Kote-Jarai Z, Pharoah PDP et al (2019) Polygenic risk-tailored screening for prostate cancer: a benefit-harm and cost-effectiveness modelling study. PLoS Med 16:e1002998

    Article  PubMed  PubMed Central  Google Scholar 

  153. Nordström T, Jäderling F, Carlsson S, Aly M, Grönberg H, Eklund M (2019) Does a novel diagnostic pathway including blood-based risk prediction and MRI-targeted biopsies outperform prostate cancer screening using prostate-specific antigen and systematic prostate biopsies? - protocol of the randomised study STHLM3MRI. BMJ Open 9:e027816

    Article  PubMed  PubMed Central  Google Scholar 

  154. Eeles RA, Ni Raghallaigh H, The BARCODE1 Study Group (2020) BARCODE 1: a pilot study investigating the use of genetic profiling to identify men in the general population with the highest risk of prostate cancer to invite for targeted screening. JCO 38:1505–1505

    Article  Google Scholar 

  155. Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C et al (2021) Improving reporting standards for polygenic scores in risk prediction studies. Nature 591:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pashayan N, Duffy SW, Neal DE, Hamdy FC, Donovan JL, Martin RM et al (2015) Implications of polygenic risk-stratified screening for prostate cancer on overdiagnosis. Genet Med 17:789–795

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G et al (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358:910–919

    Article  CAS  PubMed  Google Scholar 

  158. Lecarpentier J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J, McGuffog L et al (2017) Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores. J Clin Oncol 35:2240–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mottet N, Cornford P van den Bergh RC, Briers E, Eberli D, De Meerleer G et al (2023) European Association of Urology. Prostate Cancer - Limited Update March 2023. EAU Guidelines. Edn. presented at the EAU Annual Congress Milan. ISBN 978-94-92671-19-6

    Google Scholar 

  160. Vietri MT, D’Elia G, Caliendo G, Resse M, Casamassimi A, Pasrielo L et al (2021) Hereditary prostate cancer: genes related, target therapy and prevention. Int J Mol Sci 22(7):3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Simic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simic, T., Matic, M., Jerotic, D. (2024). Genetic Susceptibility to Prostate Cancer. In: Kocic, G., Hadzi-Djokic, J., Simic, T. (eds) Prostate Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-51712-9_2

Download citation

Publish with us

Policies and ethics

Navigation