Tissue Culture of Cacao (Theobroma cacao L.): Between Somaclonal Variation and Mass Propagation

  • Chapter
  • First Online:
Somaclonal Variation: Basic and Practical Aspects

Abstract

Cacao (Theobroma cacao L.) is an important commercial and agricultural crop. It has been the subject of varied research aimed at optimizing the propagation of materials selected for different traits of interest. Tissue culture is one of the promising tools for this purpose, as well as for plant breeding and other basic research. Somatic embryogenesis (SE) in cacao has been shown to be a viable and cost-effective alternative; the process, standardized by different authors, is associated with significant advantages. However, difficulties related to somaclonal variation have also been identified, which are the main focus of this work. Of the two pathways for inducing SE, direct (DSE) and indirect somatic embryogenesis (ISE), cacao primarily responds to ISE, where an intermediate callus phase is present. Large-scale multiplication has been effectively achieved from primary somatic embryos (PSE) in hormone-supplemented culture media, which has been shown to generate somaclonal variation. It was detected through changes in embryos development and conversion rates, plant morphology and architecture, and supported at the genetic and molecular levels. This work provides an overview of the state of development of plant production technology by SE for cacao and the challenges in terms of scaling, efficiency, and final production costs. The most prominent factors inducing somaclonal variation are also addressed, as well as the anomalies in somatic embryos and cacao seedlings found in different research studies.

Ana M. Henao and Aura I. Urrea are contributed equally to this work and share first authorship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adu-Gyamfi R, Wetten A, Rodríguez C, Marcelino (2016) Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). PLoS One 11(7):1–13. https://doi.org/10.1371/journal.pone.0158857

  • Ajijah N, Hartati R (2019) Primary and secondary somatic embryogenesis of cacao: the effect of explant types and plant growth regulators. Indonesian J Agric Sci 20(2):69–76. https://doi.org/10.21082/ijas.v.20.n2.2019.p69-76

  • Ajijah N, Hartati R, Rubiyo R, Sukma D, Sudarsono D (2016) Effective cacao somatic embryo regeneration on kinetin supplemented DKW medium and somaclonal variation assessment using SSRs markers. Agrivita 38(1):80–92. https://doi.org/10.17503/agrivita.v38i1.619

  • Arevalo-Gardini E, Meinhardt LW, Zuñiga LC, Arévalo-Gardni J, Motilal L, Zhang D (2019) Genetic identity and origin of “Piura Porcelana”—a fine-flavored traditional variety of cacao (Theoborma cacao) from the Peruvian Amazon. Tree Genet Genomes 15(1). https://doi.org/10.1007/s11295-019-1316-y

  • Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A (2020) Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. Funct Plant Biol 47(6):508–523

    Article  CAS  PubMed  Google Scholar 

  • Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63(2):147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  • Bekele FL, Bidaisee GG, Singh H, Saravanakumar D (2020) Morphological characterisation and evaluation of cacao (Theobroma cacao L.) in Trinidad to facilitate utilisation of Trinitario cacao globally. Genet Resour Crop Evol 67(3):621–643. https://doi.org/10.1007/s10722-019-00793-7

  • Bhojwani SS, Dantu PK (2013) Somaclonal variation. In: Plant tissue culture: an introductory text [place unknown]: Springer, pp 141–154

    Google Scholar 

  • Boza EJ, Irish BM, Meerow AW, Tondo CL, Rodríguez OA, Ventura-López M, Gómez JA, Moore JM, Zhang D, Motamayor JC, Schnell RJ (2013) Genetic diversity, conservation, and utilization of Theobroma cacao L.: genetic resources in the Dominican Republic. Genet Resour Crop Evol [Internet] 60(2):605–619. https://doi.org/10.1007/s10722-012-9860-4

  • Bustami M, Werbrouck S (2018) Somatic Embryogenesis in Elite Indonesian cacao Theobroma cacao L. In: Jain SM, Gupta P (eds) Step wise protocols for somatic embryogenesis of important woody plants [Internet] [place unknown]. Springer International Publishing AG, pp 73–81. https://doi.org/10.1007/978-1-4939-8594-4_15

  • Bustami MU, Werbrouck S (2017) Comparison of two protocols for somatic embryo induction in a Sulawesi elite Theobroma cacao L. clone. Acta Hortic 1155:71–76. https://doi.org/10.17660/ActaHortic.2017.1155.9

  • Cadby J, Araki T (2021) Towards ethical chocolate: multicriterial identifiers, pricing structures, and the role of the specialty cacao industry in sustainable development. SN Bus Econ 1(3). https://doi.org/10.1007/s43546-021-00051-y

  • Cádiz-Gurrea M, Fernández I, Aguilera LM, Fernández S, Legeai L, Bouaziz M, Segura A (2019) Bioactive compounds from Theobroma cacao: effect of isolation and safety evaluation. Plant Foods Hum Nutr 74(1):40–46. https://doi.org/10.1007/s11130-018-0694-x

    Article  CAS  Google Scholar 

  • Carvalho LSO, Ozudogru EA, Lambardi M, Paiva L (2019) Temporary immersion system for micropropagation of tree species: a bibliographic and systematic review. Not Bot Horti Agrobot Cluj Napoca 47(2):269–277

    Article  CAS  Google Scholar 

  • Clark C (2022) Chocolate. In: Miller J, Van C (eds) Food and health. Springer, Cham

    Google Scholar 

  • el Dawayati MM, Abd EL Bar OH, Zaid ZE, Zein El Din AFM (2012) In vitro morpho-histological studies of newly developed embryos from abnormal malformed embryos of date palm cv. Gundila under desiccation effect of polyethelyne glycol treatments. Ann Agric Sci [Internet]. 57(2):117–128. https://doi.org/10.1016/j.aoas.2012.08.005

  • Duta-Cornescu G, Constantin N, Pojoga D-M, Nicuta D, Simon-Gruita A (2023) Somaclonal variation—advantage or disadvantage in micropropagation of the medicinal plants. Int J Mol Sci 24(1):838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egertsdotter U, Ahmad I, Clapham D (2019) Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front Plant Sci 10(February):1–13. https://doi.org/10.3389/fpls.2019.00109

    Article  Google Scholar 

  • El-Sherif NA (2019) Impact of plant tissue culture on agricultural sustainability. In: Handbook of environmental chemistry, vol 77. [place unknown], Springer, pp 93–107. https://doi.org/10.1007/698_2017_160

  • Entuni G, Edward R, Nori H, Ahmad A (2018) Field performance of selected Malaysian cocoa clones regenerated through somatic embryogenesis cultures. Malays Appl Biol 47(1):97–102

    Google Scholar 

  • Etaware PM (2021) The effects of the phytochemistry of cocoa on the food chemistry of chocolate(s) and how disease resistance in cocoa can be improved using CRISPR/Cas9 technology. Food Chem Mol Sci 3.https://doi.org/10.1016/j.fochms.2021.100043

  • Fang JY, Wetten A, Adu-Gyamfi R, Wilkinson M, Rodríguez-López C (2009) Use of secondary somatic embryos promotes genetic fidelity in cryopreservation of cocoa (Theobroma cacao L.). Agric Food Sci 18(2):152–159. https://doi.org/10.2137/145960609789267579

  • Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta Gene Regul Mech 1849(4):385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005

    Article  CAS  Google Scholar 

  • Fehér A (2019) Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology? Front Plant Sci 10(April):1–11. https://doi.org/10.3389/fpls.2019.00536

    Article  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9.https://doi.org/10.3389/fpls.2018.00268

  • Fontanel A, Gire S, Labbe G, Favereau P, Alvarez M, Von S, Petiard V (2002) In vitro multiplication and plant regeneration of Theobroma cacao L. via stable embryogenic calli. IAPTC Congress, Plant Biotechnology 2002 and beyond:23–28

    Google Scholar 

  • Garcia C, Corrêa F, Seth F, Alex A, Marcio C, Motamayor C, Schnell R, Jean M (2016) Optimization of somatic embryogenesis procedure for commercial clones of Theobroma cacao L. Afr J Biotechnol 15(36):1936–1951. https://doi.org/10.5897/AJB2016.15513

    Article  Google Scholar 

  • Garcia C, Britto D, Marelli JP (2018) Transcription factors: their role in the regulation of somatic embryogenesis in Theobroma cacao L. and other species. In: Methods in molecular biology, vol 1815. [place unknown]: Humana Press Inc., pp 385–396. https://doi.org/10.1007/978-1-4939-8594-4_27

  • Garcia C, Furtado de Almeida A, Costa M, Britto D, Valle R, Royaert S, Marelli J (2019) Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell Tissue Organ Cult [internet]. 137(2):193–212. https://doi.org/10.1007/s11240-019-01569-8

    Article  CAS  Google Scholar 

  • Garcia C, Almeida A-AF de, Costa M, Britto D, Mangabeira P, Silva L, Silva J, Royaert S, Marelli J-P (2021) Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L. Reveal epigenome modifications associated with somatic embryo abnormalities. Sci Rep.: under review

    Google Scholar 

  • Garcia C, Furtado de Almeida AA, Costa M, Britto D, Correa F, Mangabeira P, Silva L, Silva J, Royaert S, Marelli JP (2022) Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L. reveal epigenome modifications associated with somatic embryo abnormalities. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-18035-9

  • Guillou C, Verdier D (2022) Theobroma cacao: somatic embryogenesis. In: Ramírez-Mosqueda MA (ed) Somatic embryogenesis methods in molecular biology, vol 2527. New York, pp 69–81

    Google Scholar 

  • Henao AM, Hajduk D, Cano D, Trujillo A (2022a) Indicator framework for large-scale cacao (Theobroma cacao L.) in vitro plant production planning and controlling. Bionatura [Internet] 8(1):1–7. https://doi.org/10.21931/RB/2023.08.01.8

  • Henao A, Palacio D, Urrea A (2022b) Cost analysis of cacao (Theobroma cacao L.) plant propagation through the somatic embryogenesis method. Bionatura 7(2):1–13. https://doi.org/10.21931/rb/2022.07.02.2

  • Henao-Ramírez AM, Salazar Duque HJ, Calle Tobón AF, Urrea Trujillo AI (2021) Determination of genetic stability in cacao plants (Theobroma cacao L.) derived from somatic embryogenesis using microsatellite molecular markers (SSR). Int J Fruit Sci 21(1):284–298. https://www.tandfonline.com/, https://doi.org/10.1080/15538362.2021.1873219

  • Hussain SS, Rao AQ, Husnain T, Riazuddin S (2009) Cotton somatic embryo morphology affects its conversion to plant. Biol Plant [internet] 53(2):307–311. https://doi.org/10.1007/s10535-009-0055-6

    Article  CAS  Google Scholar 

  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development (cambridge). 143(9):1442–1451. https://doi.org/10.1242/dev.134668

    Article  CAS  Google Scholar 

  • Kouassi M, Kahia J, Kouame C, Tahi M, Koffi K (2017) Comparing the effect of plant growth regulators on callus and somatic embryogenesis induction in four elite Theobroma cacao L. genotypes. HortScience 52:142–145. https://doi.org/10.21273/HORTSCI11092-16

  • Lafargue-Molina P (2021) Marker development for the traceability of certified sustainably produced cacao (Theobroma cacao) in the chocolate industry [place unknown]

    Google Scholar 

  • Li Z, Traore A, Maximova S, Guiltinan M (1998) Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.) using thidiazuron. In vitro Cell Dev Biol 34:293–299. https://doi.org/10.1007/BF02822737

  • López-Baez O, Moreno J, Pacheco S (2000) Avances en Propagación de cacao Theobroma cacao por embriogenesis Somática en Mexico. In: Cocoa biotech. Malaysia

    Google Scholar 

  • Macias-Naranjo S, Henao-Ramírez A, Urrea-Trujillo A (2023) Propagation of the Colombian genotype of cacao (Theobroma cacao L.) CNCh12 by somatic embryogenesis. Bionatura 8(1)

    Google Scholar 

  • Maximova S, Alemanno L, Young A, Ferriere N, Traore A, Guiltinan M (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Develop Biol Plant 38(3):252–259. https://doi.org/10.1079/IVP2001257

    Article  Google Scholar 

  • Maximova SN, Florez S, Shen X, Niemenak N, Zhang Y, Curtis W, Guiltinan MJ (2014) Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biol 14(1):1–18

    Google Scholar 

  • Minyaka E, Niemenak N, Sangare A, Ndoumou D (2008) Effect of MgSO4 and K2SO4 on somatic embryo differentiation in Theobroma cacao L. Plant Cell Tissue Organ Cult 94(2):149–160. https://doi.org/10.1007/s11240-008-9398-5

    Article  CAS  Google Scholar 

  • Nair K (2021) Cocoa (Theobroma cacao L.). In: Tree crops. [place unknown]. Springer International Publishing. https://doi.org/10.1007/978-3-030-62140-7

  • Noah AM, Niemenak N, Sunderhaus S, Haase C, Omokolo DN, Winkelmann T, Braun H-P (2013) Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L. J Proteomics [Internet] 78:123–133. https://doi.org/10.1016/j.jprot.2012.11.007

  • Osorio-Guarín JA, Berdugo-Cely J, Coronado RA, Zapata YP, Quintero C, Gallego-Sánchez G, Yockteng R (2017) Colombia a source of cacao genetic diversity as revealed by the population structure analysis of germplasm bank of Theobroma cacao l. Front Plant Sci 8.https://doi.org/10.3389/fpls.2017.01994

  • Osorio-Montalvo P, Sáenz-Carbonell L, De-la-Peña C (2018) 5-azacytidine: a promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int J Mol Sci 19(10). https://doi.org/10.3390/ijms19103182

  • Osorio T, Henao A, de la Hoz T, Urrea A (2022) Propagation of IMC67 plants, universal cacao (Theobroma cacao L.) rootstock via somatic embryogenesis. Int J Fruit Sci 22(1):78–94. https://doi.org/10.1080/15538362.2021.2023067

  • Peña-López JL, Azpeitia-Morales A, Mirafuentes-Hernández F, Ruíz-Carrera V, Sáenz-Carbonell L (2016) Embriogénesis somática en cacao (Theobroma cacao) en sistemas de inmersión automatico. Ecosistemas y Recursos Agropecuarios [Internet] 3(8):215–224. www.ujat.mx/era215

  • Richardson JE, Whitlock BA, Meerow AW, Madriñán S (2015) The age of chocolate: a diversification history of Theobroma and Malvaceae. Front Ecol Evol 3(NOV). https://doi.org/10.3389/fevo.2015.00120

  • Rodríguez López C, Wetten A, Wilkinson M (2004) Detection and quantification of in vitro-culture induced chimerism using simple sequence repeat (SSR) analysis in Theobroma cacao (L.). Theor Appl Genet 110(1):157–166. https://doi.org/10.1007/s00122-004-1823-5

  • Rodríguez López C, Sicilia H, Wetten A, Wilkinson M (2010) Detection of somaclonal variation during cocoa somatic embryogenesis characterised using cleaved amplified polymorphic sequence and the new freeware Artbio. Mol Breeding 25(3):501–516. https://doi.org/10.1007/s11032-009-9348-x

    Article  CAS  Google Scholar 

  • Rodríguez López C, Sicilia H, Wetten A, Wilkinson M (2010) Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol 186(4):856–868

    Article  PubMed  Google Scholar 

  • Sarmah D, Sutradhar M, Singh BK (2017) Somaclonal variation and its’ application in ornamentals plants. Int J Pure App Biosci 5:396–406

    Article  Google Scholar 

  • Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, Rn C, Samynathan R (2022) Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 73(3):259–277. https://doi.org/10.1007/s42977-022-00126-3

    Article  CAS  PubMed  Google Scholar 

  • Sodré GA, Gomes ARS (2019) Cocoa propagation, technologies for production of seedlings. Rev Bras Frutic 41(2):1–22. https://doi.org/10.1590/0100-29452019782

    Article  Google Scholar 

  • Solano W (2008) Embriogénesis Somática en Clones Superiores de Cacao (Theobroma cacao L.) Obtenidos en el Programa de Mejoramiento Genético CATIE [place unknown]: Centro Agronómico Tropical de Investigación y Enseñanza, Costa Rica

    Google Scholar 

  • Soraia T (2013) Somatic Embryogenesis of Theobroma cacao L.: developmental physiology of the embryo and improvement of culture conditions. University of Hamburg, Hamburg

    Google Scholar 

  • Souza PA, Moreira LF, Sarmento D, da Costa FB (2018) Cacao—Theobroma cacao. In: Exotic fruits [place unknown]. Elsevier, pp 69–76. https://doi.org/10.1016/b978-0-12-803138-4.00010-1

  • Suárez-castellá M, Kosky RG, Chong-pérez B, Reyes M, García- L, Sarría Z, Orellana P, Rodríguez A, Triana R, Pérez Z et al (2012) Estrategia de innovación tecnológica para el empleo de embriogénesis somática en medios de cultivo semisólido en Musa spp. y su impacto económico. Biotecnología Vegetal 12(1):41–48

    Google Scholar 

  • Swamy MK (2020) Plant-derived bioactives: Production, properties and therapeutic applications [place unknown]. Springer, Singapore. https://doi.org/10.1007/978-981-15-1761-7

  • Wang QM, Wang L (2012) An evolutionary view of plant tissue culture: Somaclonal variation and selection. Plant Cell Rep 31(9):1535–1547. https://doi.org/10.1007/s00299-012-1281-5

    Article  CAS  PubMed  Google Scholar 

  • Weckx S, Inzé D, Maene L (2019) Tissue culture of oil palm: finding the balance between mass propagation and somaclonal variation. Front Plant Sci 10.https://doi.org/10.3389/fpls.2019.00722

  • Wickramasuriya A, Dunwell J (2018) Cacao biotechnology: current status and future prospects. Plant Biotechnol J 16(1):4–17. https://doi.org/10.1111/pbi.12848

    Article  PubMed  Google Scholar 

  • Winkelmann T (2016) In: Germana MA, Lambardi M (eds) Somatic versus zygotic embryogenesis: learning from seeds BT—In vitro embryogenesis in higher plants [internet]. Springer, New York, pp 25–46. https://doi.org/10.1007/978-1-4939-3061-6_2

  • Wójcikowska B, Wójcik AM, Gaj MD (2020) Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci 21(7). https://doi.org/10.3390/ijms21072307

  • Zarrillo S, Gaikwad N, Lanaud C, Powis T, Viot C, Lesur I, Fouet O, Argout X, Guichoux E, Salin F et al (2018) The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat Ecol Evol 2(12):1879–1888. https://doi.org/10.1038/s41559-018-0697-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Laboratory of Plant Physiology and Plant Tissue Culture of Universidad de Antioquia. A special acknowledgement to Universidad de Antioquia's Research Development Committee (CODI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Henao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henao, A.M., Osorio, T., Urrea, A.I. (2024). Tissue Culture of Cacao (Theobroma cacao L.): Between Somaclonal Variation and Mass Propagation. In: Sánchez-Romero, C. (eds) Somaclonal Variation: Basic and Practical Aspects. Springer, Cham. https://doi.org/10.1007/978-3-031-51626-9_8

Download citation

Publish with us

Policies and ethics

Navigation