Computational Modelling and Performance Analysis of a River Turbine

  • Conference paper
  • First Online:
Advances in Design Engineering IV (INGEGRAF 2023)

Abstract

This paper proposes the design and validation methodology for a sustainable water supply system using river energy, updating a historical mechanism. Among the strategies of the European Green Deal, applications are framed for the decontamination of the aquatic environment and the use of clean energies. Within these priorities, this work is based on the key characteristics of historical proposals, which, although they no longer respond to current needs, still serve as a reference to propose modern designs. In particular and based on the mechanism of Toledo (Spain) by Juanelo Turriano, a water supply design using electric water pumps is proposed. The necessary energy is directly obtained from the river, with the use of a turbine. To validate the proposed design, and verify the requirements, a model is developed using computational fluid mechanics tools. The results provide key variables specific simulations, thus establishing a scalable validation methodology for this sustainable design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peña-Ramos JA, Bagus P, Amirov-Belova D (2020) The North Caucasus region as a blind spot in the “European Green Deal”: energy supply security and energy superpower Russia. Energies 14(1):17

    Article  Google Scholar 

  2. Tutak M, Brodny J, Bindzár P (2021) Assessing the level of energy and climate sustainability in the European union countries in the context of the European green deal strategy and agenda 2030. Energies 14(6):1767

    Article  Google Scholar 

  3. Tello E, Ostos JR (2012) Water consumption in Barcelona and its regional environmental imprint: a long-term history (1717–2008). Reg Environ Change 12:347–361

    Article  Google Scholar 

  4. Macías JP, Domínguez AD (2011) Ingeniería minera antigua y medieval en el suroeste ibérico. Bol Geol Min 122(1):3

    Google Scholar 

  5. Domínguez AD, Soares AMM, Queiroz PF (2013) A datação pelo radiocarbono de elementos de rodas romanas de madeira para elevação de água nas Minas de Rio Tinto. Onoba. Revista de Arqueología y Antigüedad (1)

    Google Scholar 

  6. Gibbs J (1973) Federico Zuccaro y el artificio de Juanelo en 1586. In Anales toledanos (No. 8, pp 49–51). Diputación Provincial de Toledo

    Google Scholar 

  7. Martínez-Pinna J (2019) Juanelo Turriano, el genio renacentista español. Clío: Revista de Historia 210:88–91

    Google Scholar 

  8. Eamon W (2018) Spanish science in the age of the New. In: A companion to the Spanish renaissance, Hilaire Kallendorf, pp 473–507

    Google Scholar 

  9. Zanetti C (2015) Juanelo Turriano, de Cremona a la corte. Fundación Juanelo Turriano, Madrid

    Google Scholar 

  10. Bermejo-Herrero M, González-Conde L, Del-Río-Cidoncha M, Martínez-Palacios J (2013) Reconstrucción virtual del artificio de Juanelo Turriano para elevar agua del río Tajo a Toledo. Fundación Juanelo Turriano, Madrid

    Google Scholar 

  11. Centro de Estudios Hidrográficos (2018) Anuario de aforos 2017–2018. Estaciones de aforo. [En línea]. https://ceh.cedex.es/anuarioaforos/afo/estaf-datos.asp?indroea=3904. Último acceso: 15 11 2021

  12. Rodríguez-Pérez Á, Pulido-Calvo I, Cáceres-Ramos P (2021) A computer program to support the selection of turbines to recover unused energy at hydraulic networks. Water 13(4):467

    Google Scholar 

  13. Quaranta E, Bonjean M, Cuvato D, Nicolet C, Dreyer M, Gaspoz A, Rey-Mermet S, Boulicaut B, Pratalata L, Pinelli M et al (2020) Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems. Sustainability 12:8873

    Google Scholar 

  14. Hasmatuchi V, Bosioc A, Luisier S, Münch-Alligné C (2018) A dynamic approach for faster performance measurements on hydraulic turbomachinery model testing. Appl Sci 8:1426

    Google Scholar 

  15. Postacchini M, Darvini G, Finizio F, Pelagalli L, Soldini L, Di Giuseppe E (2020) Hydropower generation through pump as turbine: experimental study and potential application to small-scale WDN. Water 12:958

    Google Scholar 

  16. Pérez-Sánchez M, Sánchez-Romero F, Ramos H, López-Jiménez P (2017) Energy recovery in existing water networks: towards greater sustainability. Water 9:97

    Google Scholar 

  17. Sinagra M, Aricò C, Tucciarelli T, Morreale G (2020) Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production. Renew Energy 149:980–986

    Google Scholar 

  18. Mehrabadi M, Horwitz J, Subramaniam S, Mani A (2018) A direct comparison of particle-resolved and point-particle methods in decaying turbulence. J Fluid Mech 850:336–369

    Google Scholar 

  19. Baldocchi D (2014) Lecture 16, wind and turbulence, part 1, surface boundary layer: theory and biometeorology, ESPM 129. University of California, Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Mariano Rodríguez Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, Á.M.R., Torres, J.A.H., González, C.A.R., Mancera, J.J.C. (2024). Computational Modelling and Performance Analysis of a River Turbine. In: Manchado del Val, C., Suffo Pino, M., Miralbes Buil, R., Moreno Sánchez, D., Moreno Nieto, D. (eds) Advances in Design Engineering IV. INGEGRAF 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-51623-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51623-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51622-1

  • Online ISBN: 978-3-031-51623-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation