Cork Composites for Sustainable E-micromobility Safety

  • Chapter
  • First Online:
Cork-Based Materials in Engineering

Abstract

Bicycle helmets are mainly composed of thermoplastic components and expanded foams based on oil-derived materials. These seem not to be an option for users of electric vehicles in the context of micromobility. Focusing on standing e-scooters, head injuries are among the most common forms of trauma among its users. The literature indicates a critical need for novel and innovative personal protective gear. Cork composites and structures have shown great potential to be a sustainable alternative to materials employed in protective devices with the role of impact energy absorption. This chapter presents cork composites and cork-based structures as sustainable options for e-micromobility safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trivedi TK, Liu C, Antonio ALM, Wheaton N, Kreger V, Yap A, Schriger D, Elmore JG (2019) Injuries associated with standing electric scooter use. JAMA Netw Open 2:e187381. https://doi.org/10.1001/jamanetworkopen.2018.7381

    Article  Google Scholar 

  2. Serra GF, Fernandes FAO, Noronha E, de Sousa RJA (2021) Head protection in electric micromobility: a critical review, recommendations, and future trends. Accid Anal Prev 163:106430. https://doi.org/10.1016/J.AAP.2021.106430

    Article  Google Scholar 

  3. Sanders RL, Branion-Calles M, Nelson TA (2020) To scoot or not to scoot: findings from a recent survey about the benefits and barriers of using E-scooters for riders and non-riders. Transp Res Part A Policy Pract 139:217–227. https://doi.org/10.1016/J.TRA.2020.07.009

    Article  Google Scholar 

  4. Ptak M, Kaczynski P, Fernandes FAO, de Sousa RJA (2017) Assessing impact velocity and temperature effects on crashworthiness properties of cork material. Int J Impact Eng 106. https://doi.org/10.1016/j.ijimpeng.2017.04.014

  5. Fernandes FAO, Jardin RT, Pereira AB, Alves de Sousa RJ (2015) Comparing the mechanical performance of synthetic and natural cellular materials. Mater Des 82:335–341. https://doi.org/10.1016/j.matdes.2015.06.004

    Article  Google Scholar 

  6. Jardin RTT, Fernandes FAOAO, Pereira ABB, De Sousa RJA, Alves de Sousa RJ (2015) Static and dynamic mechanical response of different cork agglomerates. J Mater Des 68:121–126. https://doi.org/10.1016/j.matdes.2014.12.016

    Article  Google Scholar 

  7. Fernandes FAO, Pascoal RJS, Alves de Sousa RJ (2014) Modelling impact response of agglomerated cork. Mater Des 58:499–507. https://doi.org/10.1016/j.matdes.2014.02.011

    Article  Google Scholar 

  8. Kaczynski P, Ptak M, Wilhelm J, Fernandes FAO, de Sousa RJAA (2018) High-energy impact testing of agglomerated cork at extremely low and high temperatures. Int J Impact Eng 126:109–116. https://doi.org/10.1016/j.ijimpeng.2018.12.001

    Article  Google Scholar 

  9. Ptak M, Kaczyński P, Wilhelm J, Margarido JMT, Marques PAAP, Pinto SC, de Sousa RJA, Fernandes FAO (2019) Graphene-enriched agglomerated cork material and its behaviour under quasi-static and dynamic loading. Materials 12:151. https://doi.org/10.3390/ma12010151

    Article  Google Scholar 

  10. Santos PT, Pinto S, Marques PAAP, Pereira AB, Alves de Sousa RJ (2017) Agglomerated cork: a way to tailor its mechanical properties. Compos Struct 178:277–287. https://doi.org/10.1016/j.compstruct.2017.07.035

    Article  Google Scholar 

  11. Fernandes FAO, de Sousa RJA, Ptak M, Migueis G (2019) Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading. Appl Sci (Switzerland) 9:1–26. https://doi.org/10.3390/app9040735

    Article  Google Scholar 

  12. Kaczyński P, Ptak M, Fernandes AO, Chybowski L, Wilhelm J, Alves de Sousa J (2019) Development and testing of advanced cork composite sandwiches for energy-absorbing structures. Materials 12:697. https://doi.org/10.3390/ma12050697

    Article  Google Scholar 

  13. Gürgen S, Fernandes FAO, de Sousa RJA, Kuşhan MC (2021) Development of eco-friendly shock-absorbing cork composites enhanced by a non-Newtonian fluid. Appl Compos Mater 28:165–179. https://doi.org/10.1007/S10443-020-09859-7/FIGURES/11

    Article  Google Scholar 

  14. Rangel F, Carlos R, Fa M. Coordinación: José Francisco Rangel 6yQLD %RPELFR Carlos Manuel Faísca 3HGUR 0RXULVFR. 0–14

    Google Scholar 

  15. Cortiça APd. Cortiça: História. https://www.apcor.pt/cortica/factos-curiosidades/historia/. Accessed 3 Dec 2021

  16. Fernandes FAO (2017) Biomechanical analysis of helmeted head impacts: novel materials and geometries

    Google Scholar 

  17. Crouvisier-Urion K, Chanut J, Lagorce A, Winckler P, Wang Z, Verboven P, Nicolai B, Lherminier J, Ferret E, Gougeon RD, Bellat JP, Karbowiak T (2019) Four hundred years of cork imaging: new advances in the characterization of the cork structure. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-55193-9

    Article  Google Scholar 

  18. Cortiça APd (2016) Cortiça: O que é? https://www.apcor.pt/cortica/o-que-e/. Accessed 1 Mar 2022

  19. Pereira H (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol 22:211–218. https://doi.org/10.1007/BF00386015

    Article  Google Scholar 

  20. Anjos O, Pereira H, Rosa ME (2008) Effect of quality, porosity and density on the compression properties of cork. Holz Roh Werkst 66:295–301. https://doi.org/10.1007/s00107-008-0248-2

    Article  Google Scholar 

  21. Le Barbenchon L, Girardot J, Kopp JB, Viot P (2019) Multi-scale foam: 3D structure/compressive behaviour relationship of agglomerated cork. Materialia (Oxf) 5:100219. https://doi.org/10.1016/j.mtla.2019.100219

    Article  Google Scholar 

  22. Gameiro CP, Cirne J, Gary G, Miranda V, Pinho-da-Cruz J, Teixeira-Dias F (2005) Numerical and experimental study of the dynamic behaviour of cork. Des Use Light-Weight Mater II:65–84

    Google Scholar 

  23. Sanchez-Saez S, García-Castillo SK, Barbero E, Cirne J (2015) Dynamic crushing behaviour of agglomerated cork. Mater Des 65:743–748. https://doi.org/10.1016/j.matdes.2014.09.054

    Article  Google Scholar 

  24. Sanchez-Saez S, Barbero E, Garcia-Castillo SK, Ivañez I, Cirne J (2015) Experimental response of agglomerated cork under multi-impact loads. Mater Lett 160:327–330. https://doi.org/10.1016/j.matlet.2015.08.012

    Article  Google Scholar 

  25. Fernandes FAO, Tavares JP, Alves de Sousa RJ, Pereira AB, Esteves JL (2017) Manufacturing and testing composites based on natural materials. Proc Manuf 13:227–234. https://doi.org/10.1016/j.promfg.2017.09.055

    Article  Google Scholar 

  26. Sergi C, Boria S, Sarasini F, Russo P, Vitiello L, Barbero E, Sanchez-Saez S, Tirillò J (2021) Experimental and finite element analysis of the impact response of agglomerated cork and its intraply hybrid flax/basalt sandwich structures. Compos Struct 272:114210. https://doi.org/10.1016/j.compstruct.2021.114210

    Article  Google Scholar 

  27. Ptak M, Fernandes FAO, Dymek M, Welter C, Brodziński K, Chybowski L (2022) Analysis of electric scooter user kinematics after a crash against SUV. PLoS One 17:e0262682. https://doi.org/10.1371/JOURNAL.PONE.0262682

    Article  Google Scholar 

  28. Ledesma RD, Shinar D, Valero-Mora PM, Haworth N, Ferraro OE, Morandi A, Papadakaki M, De Bruyne G, Otte D, Saplioglu M (2019) Psychosocial factors associated with helmet use by adult cyclists. Transp Res Part F Traffic Psychol Behav 65:376–388. https://doi.org/10.1016/J.TRF.2019.08.003

    Article  Google Scholar 

  29. Wu X, **ao W, Deng C, Schwebel DC, Hu G (2019) Unsafe riding behaviors of shared-bicycle riders in urban China: a retrospective survey. Accid Anal Prev 131:1–7. https://doi.org/10.1016/J.AAP.2019.06.002

    Article  Google Scholar 

  30. Bottlang M, Rouhier A, Tsai S, Gregoire J, Madey SM (2020) Impact performance comparison of advanced bicycle helmets with dedicated rotation-dam** systems. Ann Biomed Eng 48:68–78. https://doi.org/10.1007/S10439-019-02328-8/FIGURES/4

    Article  Google Scholar 

  31. Varela MM, Fernandes FAO, Alves de Sousa RJ (2020) Development of an eco-friendly head impact protection device. Appl Sci 10:2492. https://doi.org/10.3390/app10072492

    Article  Google Scholar 

  32. Zhang J, Wang Y, Deng H, Zhou J, Liu S, Wu J, Sang M, Gong X (2022) A high anti-impact STF/Ecoflex composite structure with a sensing capacity for wearable design. Compos B Eng 233:109656. https://doi.org/10.1016/J.COMPOSITESB.2022.109656

    Article  Google Scholar 

  33. Gürgen S, Kuşhan MC, Li W (2017) Shear thickening fluids in protective applications: a review. Prog Polym Sci 75:48–72. https://doi.org/10.1016/J.PROGPOLYMSCI.2017.07.003

    Article  Google Scholar 

  34. Ferreira Serra G, Fernandes FAO, Alves de Sousa JR, Noronha E, Ptak M (2022) New hybrid cork-STF (Shear thickening fluid) polymeric composites to enhance head safety in micro-mobility accidents. Compos Struct 301:116138. https://doi.org/10.1016/J.COMPSTRUCT.2022.116138

    Article  Google Scholar 

  35. Antunes e Sousa GJ, Rocha ARS, Serra GF, Fernandes FAO, Alves de Sousa RJ (2023) Shear thickening fluids in cork agglomerates: an exploration of advantages and drawbacks. Sustainability (Switzerland) 15:6764. https://doi.org/10.3390/SU15086764/S1

    Article  Google Scholar 

  36. Serra G, Antunes Sousa G, António Oliveira Fernandes F, José Alves de Sousa R, Jorge Henriques Noronha E (2023) Designing for sustainability and safety in urban micro-mobility: a novel helmet concept. https://doi.org/10.21203/rs.3.rs-3088077/v1

Download references

Acknowledgments

This work was funded by National Funds by FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project 2022.04022.PTDC with the following DOI: 10.54499/2022.04022.PTDC (https://doi.org/10.54499/2022.04022.PTDC). This article/thesis/book was supported by the projects UIDB/00481/2020 and UIDP/00481/2020 – Fundação para a Ciência e a Tecnologia, DOI 10.54499/UIDB/00481/2020 (https://doi.org/10.54499/UIDB/00481/2020) and DOI 10.54499/UIDP/00481/2020 (https://doi.org/10.54499/UIDP/00481/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio A. O. Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, F.A.O., Ferreira, J.B.S.S., Alves de Sousa, R.J. (2024). Cork Composites for Sustainable E-micromobility Safety. In: Gürgen, S. (eds) Cork-Based Materials in Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-51564-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51564-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51563-7

  • Online ISBN: 978-3-031-51564-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation