Ab Initio Calculations

  • Chapter
  • First Online:
Computational Chemistry
  • 123 Accesses

Abstract

Ab initio calculations rest on solving the Schrödinger equation; the nature of the necessary approximations determines the level of the calculation. In the simplest approach, the Hartree-Fock method, the total molecular wavefunction Ψ is approximated as a Slater determinant composed of occupied spin orbitals. To use these in practical calculations, the spatial part of the spin orbitals is approximated as a linear combination (a weighted sum) of basis functions. Electron correlation methods are also discussed. The main uses of the ab initio method are calculating molecular geometries, energies, vibrational frequencies, spectra, ionization energies and electron affinities, and properties like dipole moments which are connected with electron distribution. These calculations find theoretical and practical applications, since, for example, enzyme-substrate interactions depend on shapes and charge distributions and reaction equilibria and rates depend on energy differences, and spectroscopy plays an important role in identifying and understanding novel molecules. The visualization of calculated phenomena can be very important in interpreting results.

“I could have done it in a much more complicated way,” said the Red Queen, immensely proud.

Attributed, probably apocryphally, to Lewis Carroll

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Douglas Hartree, born in Cambridge, England, 1897. Ph.D. Cambridge, 1926. Professor applied mathematics, theoretical physics, Manchester, Cambridge. Died Cambridge, 1958.

  2. 2.

    John Slater, born in Oak Park Illinois, 1900. Ph.D. Harvard, 1923. Professor of physics, Harvard, 1924–1930; MIT 1930–1966; University of Florida at Gainesville, 1966–1976. Author of 14 textbooks, contributed to solid-state physics and quantum chemistry, developed X-alpha method (early density functional theory method). Died Sanibel Island, Florida, 1976.

  3. 3.

    John Pople, born in Burnham-on-Sea, Somerset, England, 1925. Ph.D. (Mathematics) Cambridge, 1951. Professor, Carnegie-Mellon University, 1960–1986, Northwestern University (Evanston, Illinois) 1986–2004. Nobel Prize in Chemistry in 1998 (with Walter Kohn, Chapter 5, Section 7.1). Died in Chicago, 2004.

  4. 4.

    Møller-Plesset: the Danish-Norwegian letter ø is pronounced like French eu or German ö.

  5. 5.

    F. Neese, personal communication, 2022, July 22.

  6. 6.

    Richard Bader, born in Kitchener, Ontario, Canada, 1931. Ph.D. Massachusetts Institute of Technology, 1958. Professor, University of Ottawa, 1959–1963, McMaster University, 1963–2012. Died in Burlington, Ontario, 2012.

  7. 7.

    R. Hoffmann, personal communication, 2009 August 12.

References

  1. General discussions of and references to ab initio calculations are found in: (a) Levine IN (2014) Quantum chemistry, 7th ed. Prentice Hall, Engelwood Cliffs. (b) Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York. (c) Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York. (d) An advanced book: Szabo A, Ostlund NS (1989) Modern quantum chemistry McGraw-Hill, New York. (e) Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh. (f) Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, Essex. (g) A useful reference is still: Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York. (h) An evaluation of the state and future of quantum chemical calculations, with the emphasis on ab initio methods: Head-Gordon M (1996) J Phys Chem 100:13213. (i) Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Hoboken. (j) Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New York. This book contains many trenchant comments by one of the major contributors to computational chemistry; begins with basic quantum mechanics and ab initio theory, although it later stresses semiempirical theory. (k) Young D (2001) Computational chemistry. A practical guide for applying techniques to real world problems. Wiley, New York. (l) Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester. (m) Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction, Inc., Irvine

    Google Scholar 

  2. Regarding the first use of the term in chemistry: Dewar casts aspersions on this (Dewar MJS (1992) A semiempirical life. In: Seeman JI (ed) Profiles, pathways and dreams series. American Chemical Society, Washington, DC, p. 129) by saying that in the paper in which it evidently first appeared (Parr RG, Craig DP, Ross IG (1950) J Chem Phys 18:1561) it merely meant that the collaboration of Parr on the one hand with Craig and Ross on the other had been carried through from the start in Parr’s lab. However, the PCR paper states “The computations, which are heavy, were carried through independently ab initio by RGP on the one hand, and DPC and IGR on the other.” In this author’s view this means either that both groups did the calculations independently from the beginning, or it is conceivably a nod to the complexity of evaluating complicated integrals without semiempirical assistance in those pre-computer days, and may then indeed be taken as being consonant with the current meaning of the term. Rudenberg states (Rudenberg K, Schwarz WHE (2013) Chapter 1 In: Strom ET, Wilson AK (eds) Pioneers of quantum chemistry. ACS Symposium Series 1122. American Chemical Society, Washington, DC, p 36) that he recalled the use of ab initio by Mulliken in a lecture at the University of Chicago sometime in 1953–1955. The first appearance in print in its unambiguous modern sense seems to be Chen TC (1955) J Chem Phys 23:2200, where it is explicitly contrasted with the term semiempirical

    Google Scholar 

  3. Hartree DR (1928) Proc Cambridge Phil Soc 24:89

    Article  CAS  Google Scholar 

  4. (a) The relativistic one-electron Schrödinger equation is called the Dirac equation. It can be used with the Hartree-Fock approach to do Dirac-Fock (Dirac-Hartree-Fock) calculations; see Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, section 16.11. (b) For a brief discussion of spin-orbit interaction see I. Levine N (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, section 11.6

    Google Scholar 

  5. The many-body problem in chemistry has been reviewed: Tew DP, Klopper W, Helgaker T (2007) J Comp Chem, 28:1307

    Google Scholar 

  6. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, sections 13.4, 13.5 and pp 425–426

    Google Scholar 

  7. Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York, pp 129–131

    Google Scholar 

  8. (a) Pauling L (1928) Chem Rev 5:173; see p 208 of this paper. (b) Slater JC (1929) Phys Rev 34:1293. The simple-seeming representation of a wavefunction as a spin orbital determinant made it much easier for physicists to deal with electron spin than by group theory, with which many were, ca. 1930, unfamiliar. In his biography (“Solid-state and molecular theory: a scientific biography”, Wiley-Interscience, New York, 1975), Slater, while acknowledging Pauling’s 1928 paper, says this was his most popular publication, since it was responsible for slaying the Gruppenpest (German for group theory plague). (c) Fock V (1930) Z Physik 61:126. (d) Slater JC (1930) Phys Rev 35:210. In his biography ((b) above, p. 79) Slater says “I had planned to work out these additional terms [with electron exchange], but did not have the opportunity on account of other things I was working on, and in the meantime Fock… independently suggested the method and worked out the details.” This “Note on Hartree’s method” occupies ca. one page; Fock’s paper extends over 23 pages, replete with equations

    Google Scholar 

  9. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs. sections 7.7 and 10.1

    Google Scholar 

  10. Although it is sometimes convenient to speak of electrons as belonging to a particular atomic or molecular orbital, and although they sometimes behave as if they were localized, no electron is really confined to a single orbital, and in a sense all the electrons in a molecule are delocalized; Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New York, pp 139–143

    Google Scholar 

  11. Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York, pp 200–204

    Google Scholar 

  12. (a) Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York, chapters 1 and 2. (b) The first clear, explicit presentation of the UHF procedure: Pople JA, Nesbet RK (1954) J Chem Phys 22:571

    Google Scholar 

  13. Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York. Appendix 7

    Google Scholar 

  14. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, pp 267–268, 321

    Google Scholar 

  15. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New York. chapter 2

    Google Scholar 

  16. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, p 430

    Google Scholar 

  17. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, pp 197–198

    Google Scholar 

  18. (a) See e.g. Perrin CL (1970) Mathematics for chemists. Wiley-Interscience, New York, pp 39–41. (b) A caveat on the use of Lagrangian multipliers: Goedecke GH (1966) Am J Phys 34:571

    Google Scholar 

  19. Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York, pp 354–355

    Google Scholar 

  20. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New York, p 35

    Google Scholar 

  21. Seeger R, Pople JA (1977) J Chem Phys 66:3045

    Article  CAS  Google Scholar 

  22. Dahareng D, Dive G (2000) J Comp Chem 21:483

    Article  Google Scholar 

  23. Crawford TD, Stanton JF, Allen WD, Schaefer HF (1997) J Chem Phys 107:10626

    Article  CAS  Google Scholar 

  24. Crawford TD, Kraka E, Stanton JF, Cremer D (2001) J Chem Phys 114:10638

    Article  CAS  Google Scholar 

  25. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, p 293

    Google Scholar 

  26. Roothaan CCJ (1951) Rev Mod Phys 23:69; Hall GG (1951) Proc Roy Soc (London) A205:541

    Google Scholar 

  27. Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York, pp 288–299

    Google Scholar 

  28. (a) Frequencies and zero point energies are discussed in [1g], section 6.3. Some quantum chemists are moving beyond this standard treatment in which electron and nuclear motion are regarded as being uncoupled: Császár AG, Fábri C, Szidarovszky T, Mátyus E, Furtenbacher T, Czakó G (2012) Phys Chem Chem Phys 14:1085. They consider this as characterizing “The fourth age of quantum chemistry”, the first three ages being those seeing increasingly sophisticated treatment of (nuclear-uncoupled) electron motion. So far the fourth (electron-nuclear motion coupled) age seems limited to very small molecules. (b) Cśaszár AG, Furtenbacher T (2015) J Phys Chem A 119:10229

    Google Scholar 

  29. GAUSSIAN 92, Revision F.4: Frisch MJ, Trucks GW, Head-Gordon M, Gill PMW, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Repogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzales C, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1992) Gaussian, Inc., Pittsburgh

    Google Scholar 

  30. See e.g. Porter GJ and Hill DR (1996) Interactive linear algebra: a laboratory course using mathcad. Springer, New York

    Google Scholar 

  31. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York, pp 152–171

    Google Scholar 

  32. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York. Appendix A

    Google Scholar 

  33. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs. section 15.16

    Google Scholar 

  34. See references 1a–i

    Google Scholar 

  35. Boys SF (1950) Proc Roy Soc (London) A200:542

    Google Scholar 

  36. Gaussian is available for several operating systems; see Gaussian, Inc., http://www.gaussian.com, 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA. As of 2023, the latest “full” version (as distinct from more frequent smaller revisions) of the Gaussian suite of programs was Gaussian 16. A graphical interface designed specifically for Gaussian is GaussView, also available from Gaussian, Inc.

    Google Scholar 

  37. Lewars E (2018) Mathematical physics in theoretical chemistry, 1th edn. Blinder SM, House JE (eds) Elsevier, Amsterdam; chapter 7

    Google Scholar 

  38. Almlöf JJ, Faegri K, Korsell KJ (1982) J Comp Chem 3:385–399

    Article  Google Scholar 

  39. SPARTAN is an integrated molecular mechanics, ab initio and semiempirical program with an excellent input/output graphical interface, available for several operating systems: see Wavefunction Inc., http://www.wavefun.com, 18401 Von Karman, Suite 370, Irvine CA 92715, USA. As of 2023, the latest version of Spartan was SPARTAN‘20, available in several versions

    Google Scholar 

  40. Hehre WJ, Radom L, Schleyer P v R, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York. chapter 4

    Google Scholar 

  41. Simons J, Nichols J (1997) Quantum mechanics in chemistry. Oxford University Press, New York, pp 412–417

    Google Scholar 

  42. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs. section 15.4

    Google Scholar 

  43. Dewar MJS, Storch DM (1984) J Am Chem Soc 107:3898

    Article  Google Scholar 

  44. Inagaki S, Ishitani Y, Kakefu T (1994) J Am Chem Soc 116:5954

    Article  CAS  Google Scholar 

  45. (a) Lewars E (1998) J Mol Struct (Theochem) 423:173. (b) Lewars E (2000) J Mol Struct (Theochem) 507:165. (c) Kenny JP, Krueger KM, Rienstra-Kiracofe JC, Schaefer HF (2001) J Phys Chem A, 105:7745

    Google Scholar 

  46. The experimental geometries of Me2SO and NSF are taken from [1g], Table 6.14

    Google Scholar 

  47. Wiest O, Montiel DC, Houk KN (1997) J Phys Chem A 101:8378. and references therein

    Article  CAS  Google Scholar 

  48. Van Alsenoy C, Yu C-H, Peeters A, Martin JML, Schäfer L (1998) J Phys Chem A 102:2246

    Article  Google Scholar 

  49. See e.g. (a) Hua W, Fang T, Li W, Yu J.-G, Li S (2008) J Phys Chem A 112:10864. (b) Exner TE, Myers PG (2003) J Comp Chem 24:1980

    Google Scholar 

  50. (a) Whole issue of Chem Rev 2015, 115 (12) (b) Clary DC (2006) Science 314:265

    Google Scholar 

  51. Basis sets without polarization functions evidently make lone-pair atoms like tricoordinate N and tricoordinate O+ too flat: Pye CC, **dos JD, Poirer RA, Burnell DJ (1997) J Phys Chem A 101:3371. Other problems with the 3-21G(*) basis are that cation-metal distances tend to be too short (e.g. Rudolph W, Brooker MH, Pye CC (1995) J Phys Chem 99:3793) and that adsorption energies of organics on aluminosilicates are overestimated, and charge separation is exaggerated (private communication ca. 2000 from G. Sastre, Instituto de Technologica Quimica, Universidad Polytechnica de Valencia). Nevertheless, the 3-21G(*) basis apparently usually gives good geometries (section 5.5.1)

    Google Scholar 

  52. Warner PM (1996) J Org Chem 61:7192

    Article  CAS  PubMed  Google Scholar 

  53. (a) Fowler JE, Galbraith JM, Vacek G, Schaefer HF (1994) J Am Chem Soc 116:9311; (b) Vacek G, Galbraith JM, Yamaguchi Y, Schaefer HF, Nobes RH, Scott AP, Radom L (1994) J Phys Chem 98:8660

    Google Scholar 

  54. DeYonker NJ, Peterson KA, Wilson AK (2007) J Phys Chem A 111:11383, and references therein. This whole issue (number 44) of J Phys Chem A is a tribute to Dunning, and includes a short autobiography

    Google Scholar 

  55. See e.g. Mebel AM, Kislov VV (2005) J Phys Chem A 109:6993

    Google Scholar 

  56. See e.g. Wiberg KB (2004) J Comp Chem 25:1342

    Google Scholar 

  57. See e.g. (a) Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4; (b) Kong L, Bischoff FA, Valeev EF (2012) Chem Rev 112:75. (c) Bachorz RA, Bischoff FA, Gloß A, Hättig C, Höfener S, Klopper W, Tew DP (2011) J Comp Chem 32:2492

    Google Scholar 

  58. (a) The special theory of relativity (the one germane to chemistry, since gravity is irrelevant to our science) and its chemical consequences are nicely reviewed in Balasubramanian K (1997) Relativistic effects in chemistry. Parts A and B, Wiley, New York. (b) For a tirade against the conventional way of viewing the effect of velocity on mass see Okum L, Physics Today, 1989, June, 30

    Google Scholar 

  59. See e.g. Jacoby M (1998) Chem Eng News, 23 March, 48. Calculations on an analogue of xenon tetrafluoride with elements 117 and 118

    Google Scholar 

  60. Dirac PAM (1929) [relativity is]…of no importance in the consideration of atomic and molecular structure, and ordinary chemical reactions…. Proc R Soc A123:714

    Google Scholar 

  61. Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357; Szasz L (1985) Pseudopotential theory of atoms and molecules. Wiley, New York. (b) Relativistic Dirac-Fock calculations on closed-shell molecules: Pisani L, Clementi E (1994) J Comput Chem 15:466

    Google Scholar 

  62. (a) Figg T, Webb JR, Cundari TR, Gunnoe TB (2012) J Am Chem Soc 134:2332. (b) Rabilloud F, Harb M, Ndome H, Archirel P (2010) J Phys Chem A 114:6451

    Google Scholar 

  63. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Google Scholar 

  64. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) J Phys Chem 96:6630

    Article  CAS  Google Scholar 

  65. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs. section 16.11

    Google Scholar 

  66. (a) A good source of information on various kinds of calculations on transition metal compounds is McCleverty JA, Meyer TJ (eds) (2004) Comprehensive coordination chemistry. II. Elsevier, Amsterdam. (b) A detailed review: Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov S (1996) Chapter 2. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, Volume 8, VCH, New York. (c) The main points of reference [51a] are presented in Frenking G, Pidun U (1997) J Chem Soc Dalton Trans 1653; (d) Cundari TR, Sommerer SO, Tippett, L (1995) J Chem Phys 103:7058

    Google Scholar 

  67. J Comp Chem (2002) 23(8)

    Google Scholar 

  68. Dewar MJS (1992) A semiempirical life. Profiles, pathways and dreams series, Seeman JI (Series ed). American Chemical Society, Washington, D.C., p 185

    Google Scholar 

  69. (a) Hehre WJ, Huang WW, Klunzinger PE, Deppmeier BJ, Driessen AJ (1997) A spartan tutorial. Wavefunction Inc., Irvine. (b) Hehre WJ, Yu J, Klunzinger PE (1997) A Guide to Molecular Mechanics and Molecular Orbital Calculations in Spartan. Wavefunction Inc., Irvine. (c) Hehre WJ, Shusterman AJ, Huang WW (1996) A laboratory book of computational organic chemistry. Wavefunction Inc., Irvine

    Google Scholar 

  70. Bachrach SM (2014) Computational organic chemistry, 2nd edn. Wiley-Interscience, p 298

    Book  Google Scholar 

  71. At the HF level calculated rotation barriers of methyltoluenes become less accurate with very big bases: del Rio A, Boucekkine A, Meinnel J (2003) J Comp Chem 24:2093

    Google Scholar 

  72. At correlated levels bigger bases did not always give better results for metal hydrides; the authors say this “refutes the dogma” that bigger basis sets are necessarily better:: Klein RA, Zottola MA (2006) Chem Phys Lett 419:254

    Google Scholar 

  73. (a) Bartlett RJ, Schweigert IV, Lotrich VF (2006) J Mol Struct (Theochem) 771:1; (b) Lotrich VF, Bartlett RJ, Grabowski I (2005) Chem Phys Lett 405:43. (c) Wilson AK (2004) Abstracts, 60th Southwest Regional meeting of the American Chemical Society, Fort Worth, TX, united States, September 29-October 4; (d) Yau AD, Perera SA, Bartlett RJ (2002) Mol Phys 100:835

    Google Scholar 

  74. Moran D, Simmonett AC, Leach III FE, Allen WD, Schleyer PvR, Schaefer III HF (2006) J Am Chem Soc 128:9342

    Google Scholar 

  75. Janoschek R (1995) Chemie in unserer Zeit 29:122

    Google Scholar 

  76. (a) Raghavachari K, Anderson JB (1996) J Phys Chem 100:12960. (b) A historical review: Löwdin P-O (1995) Int J Quantum Chem 55:77. (c) Fermi and Coulomb holes and correlation: [1c], pp 296–297

    Google Scholar 

  77. Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York, p 286

    Google Scholar 

  78. For example: Hurley AC (1976) Introduction to the electron theory of small molecules. Academic, New York, pp 286–288, or Ermler WC, Kern CW (1974) J Chem Phys 61:3860

    Google Scholar 

  79. Löwdin P-O (1959) Advan Chem Phys 2:207

    Google Scholar 

  80. (a) Scott AP, Radom L (1996) J Phys Chem 100:16502. (b) Sibaev M, Crittenden DL (2015) J Phys Chem A 119:13107

    Google Scholar 

  81. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255; Chart 1

    Google Scholar 

  82. See e.g. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs., chapter 16

    Google Scholar 

  83. Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B (2020) Chem Rev 120:5878

    Article  CAS  PubMed  Google Scholar 

  84. Brief introductions to the MP treatment of atoms and molecules: (a) Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, section 16.3. (b) Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York, section 11–13. (c) Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, Essex., section 3.3.2

    Google Scholar 

  85. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs. chapter 9

    Google Scholar 

  86. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  87. Binkley JS, Pople JA (1975) Int J Quantum Chem 9:229

    Article  CAS  Google Scholar 

  88. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, p section 7.4

    Google Scholar 

  89. Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York, pp 367–368

    Google Scholar 

  90. See e.g. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York, p 353; Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, Essex, p 115

    Google Scholar 

  91. See e.g. Prasad VK, Otero-de-la-Rosa A, DiLabio GA (2022) J Chem Theory Comput 18:2208

    Google Scholar 

  92. Boldyrev A, Schleyer PvR, Higgins D, Thomson C, Kramarenko SS (1992) J Comput Chem 9:1066. Fluoro- and difluorodiazomethanes are minima by HF calculations, but are transition states by the MP2 method

    Google Scholar 

  93. H2C=CHOH reaction The only quantitative experimental information on the barrier for this reaction seems to be: Saito S (1976) Chem Phys Lett 42:399, halflife in the gas phase in a Pyrex flask at room temperature ca. 30 minutes. From this one calculates (Sect. 5.5.2.3.4, Eq. (5.202)) a free energy of activation of 93 kJ mol−1. Since isomerization may be catalyzed by the walls of the flask, the purely concerted reaction may have a much higher barrier. This paper also shows by microwave spectroscopy that ethenol has the O-H bond syn to the C=C. The most reliable measurement of the ethenol/ethanal equilibrium constant, by flash photolysis, is 5.89 × 10−7 in water at room temperature (Chiang Y, Hojatti M, Keeffe JR, Kresge AK, Schepp NP, Wirz J (1987) J Am Chem Soc 109:4000). This gives a free energy of equilibrium of 36 kJ mol−1 (ethanal 36 kJ mol−1 below ethenol). HNC reaction The barrier for rearrangement of HNC to HCN has apparently never been actually measured. The equilibrium constant in the gas phase at room temperature was calculated (Maki AG, Sams RL (1981) J Chem Phys 75:4178) at 3.7 × 10−8, from actual measurements at higher temperatures; this gives a free energy of equilibrium of 42 kJ mol−1 (HCN 42 kJ mol−1 below HNC). According to high-level ab initio calculations supplemented with experimental data (Active Thermochemical Tables) HCN lies 62.35±0.36 kJ mol-1 (converting the reported spectroscopic cm-1 energy units to kJ mol−1) below HNC; this is “a recommended value…based on all currently available knowledge”: Nguyen TL, Baraban JH, Ruscic B, Stanton JF (2015) J Phys Chem A 119:10929. CH3NC reaction The reported experimental activation energy is 161 kJ mol−1 (Wang D, Qian X, Peng J (1996) Chem Phys Lett 258:149; Bowman JM, Gazy B, Bentley JA, Lee TJ, Dateo CE (1993) J Chem Phys 99:308; Rabinovitch BS, Gilderson PW (1965) J Am Chem Soc 87:158; Schneider FW, Rabinovitch BS (1962) J Am Chem Soc 84:4215). The energy difference between CH3NC and CH3CN has apparently never been actually measured. Cyclopropylidene reaction Neither the barrier nor the equilibrium constant for the cyclopropylidene/allene reaction have been measured. The only direct experimental information of these species come from the failure to observe cyclopropylidene at 77 K (Chapman OL (1974) Pure and applied chemistry 40:511). This and other experiments (references in Bettinger HF, Schleyer PvR, Schreiner PR, Schaefer HF (1997) J Org Chem 62:9267 and in Bettinger HF, Schreiner PR, Schleyer PvR, Schaefer HF (1996) J Phys Chem 100:16147) show that the carbene is much higher in energy than allene and rearranges very rapidly to the latter. Bettinger et al. 1997 (above) calculate the barrier to be 21 kJ mol−1 (5 kcal mol−1).

    Google Scholar 

  94. (a) Saebø S, Pulay P (1987) J Chem Phys 86:914; Pulay P (1983) Chem Phys Lett 100:151. (b) Vahtras O, Almlöf J, Feyereisen MW, Pulay P (1993) Chem Phys Lett 213:514. (c) Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359. (d) The virtues of RI-MP2 are extolled in: Jurečka P, Nachtigall P, Hobza P (2001) Phys Chem Chem Phys 3:4578. (e) Deng J, Gilbert ATB, Gill PMW (2015) J Chem Theory Comput 11:1639. (f) Soydaş E, Bozkaya U (2015) J Chem Theory Comput 11:1564

    Google Scholar 

  95. (a) An excellent brief introduction to CI is given in I. Levine N (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, section 16.2. (b) A comprehensive review of the development of CI: Shavitt (1998) Mol Phys 94:3. (c) See also Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York, pp 363–369; Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York, pp 388–393; Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York, chapter 4; Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 29–38

    Google Scholar 

  96. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs. p 299 and section 16.2

    Google Scholar 

  97. Ben-Amor N, Evangelisti S, Maynau D, Rossi EPS (1998) Chem Phys Lett 288:348

    Article  CAS  Google Scholar 

  98. (a) Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Academic, New York., chapter 6. (b) Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, pp 228–236 shows how to do CASSCF calculations. For CAvSSCF calculations on the Diels-Alder reaction, see Li Y, Houk KN (1993) J Am Chem Soc 115:7478. (c) Systematic expansion of active spaces beyond the CASSCF limit: a GASSCF/SplitGAS benchmark study: Vogiatzis KD, Manni GL, Stoneburner SJ, Ma D, Gagliardi L (2015) J Chem Theory Comput 11:3010. (d) Stochastic multiconfigurational self-consistent field theory: Thomas RE, Sun Q, Alavi A, Booth GH (2015) J Chem Theory Comput 11:5316

    Google Scholar 

  99. Cacelli I, Ferretti A, Prampolini G, Barone V (2024) J Chem Theory Comput 2015:11

    Google Scholar 

  100. Lewars E (2014) Can J Chem 92:378

    Article  CAS  Google Scholar 

  101. (a) Karlstrom G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222. (b) Anderssson K, Malmqvist P-Å, Roos BO (1992) J Chem Phys 96:1218

    Google Scholar 

  102. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York. chapter 6

    Google Scholar 

  103. A paper boldly titled “Quadratic CI versus Coupled-Cluster Theory…”: Hrusak J, Ten-no S, Iwata S (1997) J Chem Phys 106:7185

    Google Scholar 

  104. Alberts IL, Handy NC (1988) J Chem Phys 89:2107

    Article  CAS  Google Scholar 

  105. (a) Neese F, Wennmohs F, Becker U, Riplinger C (2020) J Chem Phys, 152, 224108. (b) Eriksen JJ, Baudin P, Ettenhuber P, Kristensen K, Kjærgaard T, Jørgensen P (2015) J Chem Theory Comput 11:2984

    Google Scholar 

  106. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  107. The water dimer has been extensively studied, theoretically and experimentally: (a) Schuetz M, Brdarski S, Widmark P-O, Lindh R, Karlström G (1997) J Chem Phys 107:4597; these report an interaction energy of −20.7 kJ mol−1 (−4.94 kcal mol−1), and give a method of implementing the counterpoise correction with modest basis sets. (b) Halkier A, Koch H, Jorgensen P, Christiansen O, Nielsen MB, Halgaker T (1997) Theor Chem Acc 97:150.; these report an interaction energy of −20.9 kJ mol−1 (−5.0 kcal mol−1). (c) Feyereisen MW, Feller D, Dixon DA (1996) J Phys Chem 100:2993; these workers “best estimate” of binding electronic energy is −20.9 kJ mol−1 (−5.0 kcal mol−1). (d) A general review of the hydrogen bond: Gordon MS, Jensen JH (1996) Acc Chem Res 29:536

    Google Scholar 

  108. For discussions of BSSE and the counterpoise method see: (a) Clark T (1985) A handbook of computational chemistry. Wiley, New York, pp 289–301; (b) Martin JM (1998) Computational thermochemistry. In: Irikura KK, Frurip DJ (eds) American Chemical Society, Washington, D.C., p 223. (c) Thompson MGK, Lewars EG, Parnis JM (2005) J Phys Chem A 109: 9499. (d) van Duijneveldt FB, van Duijneveldt-van JGCM de Rijdt JH van Lenthe Chem Rev, 1994, 94, 1873. (e) L. M. Mentel, E. J. Baerends, J Chem Theory Comput, 2014, 10, 252. (f) References [106] give leading references to BSSE and [106(a)] describes a method for bringing the counterpoise correction closer to the basis set limit. (g) Methods designed to be free of BSSE: Halasz GJ, Vibok A, Mayer I (1999) J Comput Chem 20:274

    Google Scholar 

  109. (a) Xu X, Goddard WA (2004) J Phys Chem A 108:2313. (b) Garza J, Ramírez J-Z, Vargas R (2005) J Phys Chem A 109:643

    Google Scholar 

  110. (a) Conrad JA, Gordon MS (2015) J Phys Chem A 119:5377. (b) Goldey MB, Belzunces B, Head-Gordon M (2015) J Chem Theory Comput 11:4159; (c) Řezáč J, Riley KE, Hobza P (2012) J Chem Theory Comput 8:4285. (d) Řezáč J, Hobza P (2014) J Chem Theory Comput 10:3066. (e) Strutyński K, Gomes JA, Melle-Franco M (2014) J Phys Chem A 118:9561

    Google Scholar 

  111. (a) Boyd DB (2007) Chapter 7. In: Lipkowitz KB, Cundari TR (eds) Reviews in computational chemistry, vol 23. Wiley, Hoboken. (b) Mannhold R, Kubinyi H, Folkers G (eds) (2005) Chemoinformatics in drug discovery. VCH, New York. (c) Höltje H-D, Folkers G (1997) Molecular modelling. VCH, New York. (d) Tropsha A, Bowen JP (1997) Chapter 17. In: Zielinski TJ, Swift ML (eds) Using computers in chemistry and chemical education. American Chemical Society, Washington, DC. (e) Balbes LM, Mascarella SW, Boyd DB (1994) Chapter 7. In: Lipkowitz, KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. VCH, New York. (f) Vinter JL, Gardner M (1994) Molecular modelling and drug design. Macmillan, London

    Google Scholar 

  112. (a) See e.g. Bartlett RJ, Stanton JF (1994) Chapter 2. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. VCH, New York, p 106. (b) Burkert U, Allinger NL (1982) Molecular mechanics. ACS Monograph 177, American Chemical Society, Washington, DC, pp 6–10. See also Ma B, Lii J-H, Schaefer HF, Allinger NL (1996) J Phys Chem 100:8763; Ma M, Lii J-H, Chen K, Allinger NL (1997) J Am Chem Soc 119:2570

    Google Scholar 

  113. (a) Domenicano A, Hargittai I (eds) (1992) Accurate molecular structures. Oxford University Press, New York. (b) A “wake-up call”: Box VGS (2002) Chem Eng News, Feb. 18, 6

    Google Scholar 

  114. Petersson GA (1998) Chapter 13. In: Irikura KK, Frurip DJ (eds) Computational thermochemistry. American Chemical Society, Washington, DC

    Google Scholar 

  115. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 133–226; note the summary on p. 226

    Google Scholar 

  116. (a) E.g. Engelke R (1992) J Phys Chem 96: 10789. (HF/4-31G, HF/4-31G*, MP2/6-31G*). (b) For references to various calculations see: Lewars E (2008) Modeling marvels. Springer, Amsterdam, pp 151–155

    Google Scholar 

  117. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, p 118

    Google Scholar 

  118. Reference [1e], p. 118 (ozone) and p. 128 (FOOF)

    Google Scholar 

  119. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, p 36. other calculations on ozone are on pp 118, 137, and 159

    Google Scholar 

  120. Kraka E, He Y (2001) J Phys Chem A 105: 3269

    Google Scholar 

  121. (a) Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2007) J Phys Chem A 111:12604. (b) Ju X-H, Wang Z-Y, Yan X-F, **ao H-M (2007) J Mol Struct (Theochem) 804:95

    Google Scholar 

  122. Grein F (2009) J Chem Phys 130:124118

    Google Scholar 

  123. Denis PA (2004) Chem Phys Lett 395:12

    Article  CAS  Google Scholar 

  124. Ljubić I, Sabljić A (2004) Chem Phys Lett 385:214

    Google Scholar 

  125. Miliordos E, Xantheas SS (2014) J Am Chem Soc 136:2808

    Article  CAS  PubMed  Google Scholar 

  126. For thermochemical calculations, at least, fluoroorganics present special problems, e.g. Bond D (2007) J Org Chem 72:7313, and references therein; note p. 7322: “Difficulties in obtaining consistent and accurate data are found even with the simplest of the organofluoro compounds, fluoromethane”

    Google Scholar 

  127. Fluoro ethers: Good DA, Francisco JS (1998) J Phys Chem A 102:1854

    Google Scholar 

  128. Atkins P (2007) Four laws that drive the universe. Oxford University Press, Oxford

    Google Scholar 

  129. (a) Clausius R (1867) The mechanical theory of heat, English translation, Editor, Hirst T; John Van Voorst, London. (b) “Die Mechanische Wärmetheorie”, R. Clausius, Zweite Auflage, Druck und Verlag von Friedrich Vieweg und Sohn, 1876; see pp 21 and 33-34. Available online from e.g. https://archive.org/details/diemechanischew01claugoog

    Google Scholar 

  130. (a) Details of statistical mechanics calculations utilizing vibrational frequencies: Ochterski JW (2000) Thermochemistry in Gaussian; www.gaussian.com/g_whitepap/thermo.htm. (b) Details of the calculations of vibrational frequencies in Gaussian: Ochterski JW (2000) Thermochemistry in Gaussian.; http://www.gaussian.com/g_whitepap/vib.htm

  131. von Nagy-Felsobuki EI (1990) J Phys Chem 94:8041

    Article  Google Scholar 

  132. Howard IK (2002) J Chem Edition 79:697

    Article  CAS  Google Scholar 

  133. Polyrate, http://lqtc.fcien.edu.uy/cursos/Ct2/polydoc80.pdf

  134. (a) See e.g. Deng W-Q, Han K-L, Zhan J-P, He G-Z (1988) Chem Phys 288:33. (b) Computer simulations of bimolecular reactions: Hase WL, Science 266:998. (c) Non-RRKM unimolecular reactions: Lourderaj U, Hase WL (2009) J Phys Chem A 113:2236

    Google Scholar 

  135. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, p 528

    Google Scholar 

  136. Schroeder DV (2000) An Introduction to Thermal Physics. Addison Wesley, New York

    Google Scholar 

  137. Coulson CA (1961) Valence, 2nd edn. Oxford University Press, London, p 91

    Google Scholar 

  138. Irikura KK, Frurip DJ (eds) (1998) Computational thermochemistry. American Chemical Society, Washington, DC

    Google Scholar 

  139. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, p chapters 10 and 15

    Google Scholar 

  140. (a) McGlashan ML (1979) Chemical thermodynamics. Academic, London; (b) Nash LK (1968) Elements of statistical thermodynamics. Addison-Wesley, Reading; (c) A good, brief introduction to statistical thermodynamics is given by Irikura KK (1998) Computational thermochemistry. In: Irikura KK, Frurip DJ (eds) American Chemical Society, Washington, DC, Appendix B

    Google Scholar 

  141. Treptow RS (1995) J Chem Educ 72:497

    Article  CAS  Google Scholar 

  142. See Irikura KK, Frurip DJ, chapter 1, Benson SW, Cohen N, chapter 2, and Zachariah MR, Melius CF, chapter 9. In Irikura KK, Frurip DJ (eds) Computational thermochemistry. American Chemical Society, Washington, DC

    Google Scholar 

  143. These bond energies were taken from Fox MA, Whitesell JK (1994) Organic chemistry. Jones and Bartlett, Boston, p 72

    Google Scholar 

  144. Although in the author’s opinion it works well in chemistry, the disorder concept can lead to misunderstanding: a discussion of such popular misconceptions of entropy is given by Lambert FL (1999) J Chem Educ 76:1385. Related discussions can be invoked on the web with the words “Lambert entropy”.

    Google Scholar 

  145. For good accounts of the history and meaning of the concept of entropy, see (a), (b): (a) von Baeyer HC (1998) Maxwell’s Demon. Why warmth disperses and time passes. Random House, New York. (b) Greenstein G (1998) Portraits of discovery. Profiles in scientific genius, chapter 2 (“Ludwig Boltzmann and the second law of thermodynamics”). Wiley, New York

    Google Scholar 

  146. Hehre WJ, Radom L, Schleyer P v R, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York. section 6.3.9

    Google Scholar 

  147. A sophisticated study of the calculation of gas-phase equilibrium constants: Bohr F, Henon E (1998) J Phys Chem A 102:4857

    Google Scholar 

  148. A very comprehensive treatment of rate constants, from theoretical and experimental viewpoints, is given in Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice Hall, New Jersey

    Google Scholar 

  149. For the Arrhenius equation and problems associated with calculations involving rate constants and transition states see Durant JL in Irikura KK, Frurip DJ in Computational thermochemistry. Irikura KK, Frurip DJ (eds) American Chemical Society, Washington, D.C., 1998, chapter 14

    Google Scholar 

  150. E.g., Atkins PW (1998) Physical chemistry, 6th edn. Freeman, New York, p 949

    Google Scholar 

  151. Chemical kinetics and dynamics. Prentice Hall, New Jersey, 1999, p 302

    Google Scholar 

  152. Some barriers/room temperature halflives for unimolecular reactions: (a) Decomposition of pentazole and its conjugate base: 75 kJ mol−1/10 minutes and 106 kJ mol−1/2 days, respectively: Benin V, Kaszynski P, Radziszki JG (2002) J Org Chem 67:1354. (b) Decomposition of CF3CO)OOO(COCF3): 86.5 kJ mol−1/1 min: Ahsen Sv, Garciá P, Willner H, Paci MB, Argüello G (2003) Chem Eur J 9:5135. (c) Racemization of a twisted pentacene: 100 kJ mol−1/6-9 h: Lu J, Ho DM, Vogelaar NJ, Kraml CM, Pascal Jr. RA (2004) J Am Chem Soc 126:11168

    Google Scholar 

  153. Lewars E (2008) Modeling marvels: computational anticipation of novel molecules. Springer, Netherlands; chapter 10

    Google Scholar 

  154. Practical strategies for electronic structure calculations. Wavefunction, Inc., Irvine, 1995, chapter 2

    Google Scholar 

  155. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    Article  CAS  Google Scholar 

  156. (a) Cyranski MW (2005) Chem Rev 105:3773; (b) Suresh CH, Koga N (2002) J Org Chem 67:1965

    Google Scholar 

  157. Khoury PR, Goddard JD, Tam W (2004) Tetrahedron 60:8103

    Article  CAS  Google Scholar 

  158. Wiberg KB, Marwuez M (1998) J Am Chem Soc 120:2932

    Article  CAS  Google Scholar 

  159. Wheeler SE, Houk KN, Schleyer P v R, Allen WD (2009) J Am Chem Soc 131:2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. (a) Baeyer A (1885) Ber Dtsch Chem Ges 18:2269. (b) Smith MB, March J (2001) March’s advanced organic chemistry”, Wiley, New York, 2001; pp. 180-191.

    Google Scholar 

  161. (a) Fishtik I (2010) J Phys Chem A 114:3731. (b) Schleyer PvR, McKee WC (2010) J Phys Chem A 114:3737

    Google Scholar 

  162. Kybett BD, Carroll S, Natalis P, Bonnell DW, Margrave JL, Franklin JL (1966) J Am Chem Soc 88:626

    Article  CAS  Google Scholar 

  163. Lewars E (2008) Modeling marvels: computational anticipation of novel molecules. Springer, Netherlands. chapters 12 and 13

    Book  Google Scholar 

  164. De Lio AM, Durfey BL, Gilbert TM (2015) J Org Chem 80:10234

    Article  PubMed  Google Scholar 

  165. (a) Whole issue devoted to reviews of aromaticity (2005) Chem Rev:105; (b) Whole issue devoted to reviews of aromaticity (2001) Chem Rev:101

    Google Scholar 

  166. (a) Schleyer PvR, Jiao H, Goldfuss B (1995) Angew Chem Int Ed Engl 34:337. (b) George P, Trachtman M, Brett AM, Bock CW (1977) J Chem Soc Perkin Trans 2:1036. (c) Hehre WJ, McIver RT, Pople JA, Schleyer PvR (1974) J Am Chem Soc 96: 7162. (d) Radom L (1974) Chem Commun 403

    Google Scholar 

  167. Fabian J, Lewars E (2004) Can J Chem 82:50

    Article  CAS  Google Scholar 

  168. (a) Golas E, Lewars E, Liebman JF, (2009) J Phys Chem A 113: 9485. (b) Delamere C, Jakins C, Lewars E (2001) Can J Chem 79:1492.

    Google Scholar 

  169. Fink WH, Richards JC (1991) J Am Chem Soc 113:3393

    Article  CAS  Google Scholar 

  170. Slayden SW, Liebman JF (2001) Chem Rev 101:1541

    Article  CAS  PubMed  Google Scholar 

  171. Schleyer P v R, Puhlhofer F (2002) Org Lett 4:2873

    Article  CAS  PubMed  Google Scholar 

  172. Mo Y (2009) J Phys Chem A 113:5163

    Article  CAS  PubMed  Google Scholar 

  173. Lewars E (2008) Modeling marvels: computational anticipation of novel molecules. Springer, Netherlands. chapter 3

    Book  Google Scholar 

  174. (a) K. B. Wiberg, Chem Rev., 2001, 101, 1317. (b) de Meijere A., Haag R, Schüngel F-M, Kozhushkov SI, Emme I (1999) Pure Appl Chem 71, 253

    Google Scholar 

  175. Moskowitz JW, Schmidt KE, NATO ASI Series, Series C: Mathematical and Physical Sciences (1984), 125(Monte Carlo Methods Quantum Probl.), 59–70

    Google Scholar 

  176. Bauschlicher CW, Langhoff SR (1991) Science 254:394

    Article  CAS  PubMed  Google Scholar 

  177. G1: Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90, 5622

    Google Scholar 

  178. The first in the series was Gaussian 70 and the latest (early 2023) is Gaussian 16. Gaussian Inc., 340 Quinnipiac St Bldg 40, Wallingford, CT 06492 USA. Info@gaussian.com

    Google Scholar 

  179. G2: Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94, 7221

    Google Scholar 

  180. G3: Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Google Scholar 

  181. G4: Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108/1-084108/12

    Google Scholar 

  182. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys, 127, 124105.

    Google Scholar 

  183. G3(MP2): Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110, 4703

    Google Scholar 

  184. Mayhall NJ, Raghavachari K, Redfern PC, Curtiss LA (2009) J Phys Chem A, 113, 5170

    Google Scholar 

  185. Peterson KA, Feller D, Dixon DA (2012) Theor Chem Acc 131:1079

    Google Scholar 

  186. Reference 7 in Fatthi A, Kass SR, Liebman JF, Matos MAR, Miranda MS, Morais VMF (2005) J Am Chem Soc 127:6116

    Google Scholar 

  187. (a) Petersson GA, Montgomery Jr. JA, Frisch MJ, Ochterski JW (2000) J Chem Phys 112:6532. (b) Montgomery Jr. JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Google Scholar 

  188. (a) Benassi R, Taddei F (2000) J Comput Chem 21:1405. (b) Benassi R (2001) Theor Chem Acc 106: 259

    Google Scholar 

  189. Martin JML, de Oliveira G (1843) J Chem Phys 1999:111

    Google Scholar 

  190. (a) Boese AD, Oren M, Atasoylu O, Martin JML, Kállay M, Gauss J (2004) J Chem Phys 120: 4129. (b) Chan B, Radom L (2015) J Chem Theory Comput 11: 2109. (c) Vuori HT, Rautiainen JM, Kolehmainen ET, Tuononen HM (2022) J Phys Chem A 126: 1729

    Google Scholar 

  191. Pokon EK, Liptak MD, Feldgus S, Shields GC (2001) J Phys Chem A 105:10483

    Google Scholar 

  192. Bond D (2007) J Org Chem 72:5555

    Article  CAS  PubMed  Google Scholar 

  193. Bond D (2007) J Org Chem 72:7313

    Article  CAS  PubMed  Google Scholar 

  194. Ess DH, Houk KN (2005) J Phys Chem A 109:9542

    Article  CAS  PubMed  Google Scholar 

  195. For this and other caveats regarding the multistep methods see Cramer CJ (2004) Essentials of computational chemistry, 2nd edn, Wiley, Chichester, pp 241–244

    Google Scholar 

  196. E.g. Atkins PW (1998) Physical chemistry, 6th edn, Freeman, New York, p 70

    Google Scholar 

  197. Chase Jr MW (1998) J Phys Chem Ref Data, Monograph 9, 1-1951. NIST-JANAF thermochemical tables, 4th edn

    Google Scholar 

  198. Nicolaides A, Rauk A, Glukhovtsev MN, Radom L (1996) J Phys Chem 100:17460

    Article  CAS  Google Scholar 

  199. Gaussian 94 for Windows (G94W): Gaussian 94, Revision E.1, Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian, Inc., Pittsburgh PA. G94 and G98 are available for both UNIX workstations and PCs

    Google Scholar 

  200. Afeefy HY, Liebman JF, Stein SE (2009) Neutral thermochemical data In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov. Retrieved July 15, 2009

    Google Scholar 

  201. Pople JA (1970) Acc Chem Res 3:217

    Article  CAS  Google Scholar 

  202. (a) Worked examples, with various fine points: Irikura KK, Frurip DJ (1998) Computational thermochemistry, Irikura KK, Frurip DJ (eds). American Chemical Society, Washington, DC, Appendix C; (b) Heats of formation of neutral and cationic chloromethanes: Rodrigues CF, Bohme DK, Hopkinson AC (1996) J Phys Chem 100:2942. (c) Heats of formation, entropies and enthalpies of neutral and cationic enols: Turecek F, Cramer CJ (1995) J Am Chem Soc 117:12243. of neutral and cationic enols: (d) Heats of formation by ab initio and molecular mechanics: DeTar DF (1995) J Org Chem 60:7125. (e) Heats of formation and antiaromaticity in strained molecules: Glukhovtsev MN, Laiter S, Pross A (1995) J Phys Chem 99:6828. (f) Heats of formation of organic molecules with the aid of ab initio and group equivalent methods: Schmitz LR, Chen YR (1994) J Comp Chem 15:1437. (f) Isodesmic reactions in ab initio calculation of enthalpy of formation of cyclic C6 hydrocarbons and benzene isomers: Li Z, Rogers DW, McLafferty FJ, Mandziuk M, Podosenin AV (1999) J Phys Chem A 103: 426. (g) Isodesmic reactions in ab initio calculation of enthalpy of formation of benzene isomers: Cheung Y-S, Wong C-K, Li W-K (1998) Mol Struct (Theochem) 454:17

    Google Scholar 

  203. Abou-Rachid H, Song Y, Hu A, Dudiy S, Zybin SV, Goddard WA III (2008) J Phys Chem A 112:11914

    Article  CAS  PubMed  Google Scholar 

  204. Ringer AL, Sherrill CD (2008) Chem Eur J 14:2442

    Article  Google Scholar 

  205. A. Fatthi, S. R. Kass, J. F. Liebman, M. A. R. Matos, M. S. Miranda, V. M. F. Morais, J Am Chem Soc 2005, 127, 6116.; Table 5

    Google Scholar 

  206. (a) http://webbook.nist.gov. (b) (b) Lias SG, Bartmess JE, Holmes JFL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17(Suppl. 1) American Chemical Society and American Institute of Physics. (c) Pedley JB (1994) Thermochemical data and structures of organic compounds, Thermodynamics Research Center, College Station, Texas

  207. DeTar DF (1998) J Phys Chem A 102, 5128

    Google Scholar 

  208. Shaik SS, Schlegel HB, Wolfe S (1992) Theoretical aspects of physical organic chemistry. The SN2 mechanism. Wiley, New York, pp 50–51

    Google Scholar 

  209. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester. sections 15.2 and 15.3

    Google Scholar 

  210. (a) Zhang JZH (1999) Theory and applications of quantum molecular dynamics. World Scientific, Singapore, New Jersey, London and Hong Kong. (b) Thompson DL (ed) (1998) Modern methods for multidimensional dynamics in chemistry. World Scientific, Singapore/New Jersey/London/Hong Kong. (c) Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, New York. (d) Devoted to big biomolecules like proteins and nucleic acids: Schlick T (2002) Molecular modeling and simulation. An interdisciplinary guide. Springer, New York

    Google Scholar 

  211. (a) Levine IN (2014) Quantum chemistry 7th edn. Prentice Hall, Engelwood Cliffs, section 2.5 and p 591. (b) Reference [148], section 12.3. (c) Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, London

    Google Scholar 

  212. Carpenter BK (1992) Acc Chem Res 25:520

    Article  CAS  Google Scholar 

  213. (a) Litovitz AE, Keresztes I, Carpenter BK (2008) J Am Chem Soc 130:12085., and references therein. (b) Carpenter BK (1997) American Scientist, March–April, 138

    Google Scholar 

  214. (a) Shaik SS, Schlegel HB, Wolfe S (1992) Theoretical aspects of physical organic chemistry. The SN2 mechanism”, Wiley, New York, pp 84–88. (b) Kinetics of halocarbons reactions: Berry RJ, Schwartz M, Marshall P in [138], chapter 18. (c) The ab initio calculation of rate constants is given in some detail in these two references: Smith DM, Nicolaides A, Golding BT, Radom L (1998) J Am Chem Soc 120:10223; Heuts JPA, Gilbert RG, Radom L (1995) Macromolecules 28:8771; reference [1l], pp 471–489, 492–497. (d) Oliveira RC de M, Bauerfeldt GF (2015) J Phys Chem A 119: 2802

    Google Scholar 

  215. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice Hall, New Jersey. chapter 11

    Google Scholar 

  216. Spartan ‘04. Wavefunction Inc., http://www.wavefun.com, 18401 Von Karman, Suite 370, Irvine CA 92715, USA

    Google Scholar 

  217. Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction, Inc., Irvine, pp 148–150

    Google Scholar 

  218. del Rio A, Boucekkine A, Meinnel J (2003) J Comp Chem 24:2093

    Article  Google Scholar 

  219. Wiest O, Montiel DC, Houk KN (1997) J Phys Chem A 101:8378

    Article  CAS  Google Scholar 

  220. Wheeler SE, Ess DH, Houk KN (2008) J Phys Chem A 112:1798

    Article  CAS  PubMed  Google Scholar 

  221. Schneider FW, Rabinivitch BS (1962) J Am Chem Soc 84:4215

    Article  CAS  Google Scholar 

  222. Saito S (1978) Pure Appl Chem 50:1239

    Article  CAS  Google Scholar 

  223. Defrees DJ, McLean a D (1982) J Chem Phys 86:2835

    Article  CAS  Google Scholar 

  224. (a) Rodler M, Bauder A (1984) J Am Chem Soc 106:4025; (b) Rodler M, Blom CE, Bauder A (1984) J Am Chem Soc 106, 4029

    Google Scholar 

  225. Capon B, Guo B-Z, Kwok FC, Siddhanta AK, Zucco C (1988) Acc Chem Res 21:135

    Article  CAS  Google Scholar 

  226. Chapman OL (1974) Pure Appl Chem 40:511

    Article  CAS  Google Scholar 

  227. Bettinger HF, Schreiner PR, Schleyer P v R, Schaefer HF III (1996) J Phys Chem 100:16147

    Article  CAS  Google Scholar 

  228. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh. chapter 7

    Google Scholar 

  229. Foresman JB (1998) Personal communication, October 1998

    Google Scholar 

  230. Lories X, Vandooren J, Peeters D (2008) Chem Phys Lett 452:29, and references therein. The authors point out that “no theoretical calculation seems to reproduce that value”, and from high-level ab initio calculations suggest a value of 214.1 kJ mol−1 (51.17 kJ mol−1)

    Google Scholar 

  231. Good WD, Smith NK (1969) J Chem Eng Data 14:102

    Article  CAS  Google Scholar 

  232. Pedley JB, Naylor RD, Kirby SP (1986) Thermochemical data of organic compounds, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  233. Pilcher G, Pell AS, D. (1964) J Coleman Trans Faraday Soc 60:499

    Article  CAS  Google Scholar 

  234. Gurvich LV, Vetts IV, Alcock CB (1991) Thermodynamic Properties of Individual Substances, vol 2, 4th edn. Hemisphere Publishing Corp, New York

    Google Scholar 

  235. Spitzer R, Huffmann HM (1947) J Am Chem Soc 69:211

    Article  CAS  PubMed  Google Scholar 

  236. Ghysels A, Van Neck D, Van Speybroeck V, Verstraelen T, Waroquier M (2007) J Chem Phys 126:224102. and references therein

    Article  CAS  PubMed  Google Scholar 

  237. For introductions to the theory and interpretation of mass, infrared, and NMR spectra, see Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken

    Google Scholar 

  238. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  239. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 234, 235

    Google Scholar 

  240. E.g. “…it is unfair to compare frequencies calculated within the harmonic approximation with experimentally observed frequencies…”: St-Amant A (1996) Chapter 2. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7. VCH, New York p 235

    Google Scholar 

  241. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Hoboken/New Jersey, pp 358–360

    Google Scholar 

  242. Thomas JR, DeLeeuw BJ, Vacek G, Crawford TD, Yamaguchi Y, Schaefer HF (1993) J Chem Phys 99:403

    Article  CAS  Google Scholar 

  243. Radziszewski JG, Hess BA Jr, Zahradnik R (1992) A tour-de-force mainly experimental study of the IR spectrum of 1,2-benzyne. J Am Chem Soc 114:52

    Article  CAS  Google Scholar 

  244. (a) Komornicki A, Jaffe RL (1979) J Chem Phys 71:2150. (b) Yamaguchi Y, Frisch M, Gaw J, Schaefer HF, Binkley JS (1986) J Chem Phys 84, 2262. (c) Frisch M, Yamaguchi Y, Schaefer HF, Binkley JS (1986) J Chem Phys 84:531. (d) Amos RD (1984) Chem Phys Lett 108:185. (e) Gready JE, Bacskay GB, Hush NS (1978) J Chem Phys 90:467

    Google Scholar 

  245. Galabov BS, Dudev T (1996) Vibrational intensities. Elsevier Science, Amsterdam

    Google Scholar 

  246. Magers DH, Salter EA, Bartlett RJ, Salter C, Hess BA Jr, Schaad LJ (1988) J Am Chem Soc 110:3435. (comments on intensities on p. 3439)

    Article  CAS  Google Scholar 

  247. Galabov B, Yamaguchi Y, Remington RB, Schaefer HF (2002) J Phys Chem A 106:819

    Article  CAS  Google Scholar 

  248. For a good review of the cyclobutadiene problem, see Carpenter BK (1988) Advances in Molecular Modelling. Liotta D (ed), JAI Press Inc., Greenwich

    Google Scholar 

  249. (a) Amann A (1992) South African J Chem 45, 29. (b) Wooley G (1988) New Scientist 120:53. (c) Wooley G (1978) J Am Chem Soc 100:1073

    Google Scholar 

  250. (a) Trindle C (1980) Israel J Chem 19:47. (b) Mezey PG (1993) Shape in chemistry: an introduction to molecular shape and topology. VCH, New York

    Google Scholar 

  251. Theoretical calculation of dipole moments: reference [1a], section 14.2. (b) Measurement and application of dipole moments: Exner O (1975) Dipole moments in organic chemistry. Georg Thieme Publishers, Stuttgart

    Google Scholar 

  252. McClellan AL Tables of experimental dipole moments. vol 1, W. H. Freeman, San Francisco, 1963; vol. 2, Rahara Enterprises, El Cerrita, 1974

    Google Scholar 

  253. Bartlett RJ, Stanton JF (1994) Reviews in computational chemistry, vol 5, Lipkowitz KB, Boyd DB (eds) VCH, New York, p 152

    Google Scholar 

  254. (a) Huzinaga S, Miyoshi E, Sekiya M (1993) J Comp Chem 14:1440; (b) Ernzerhof M, Marian CM, Peyerimhoff SD (1993) Chem Phys Lett 204:59

    Google Scholar 

  255. Carefully defined atom charges are, it has been said, “in principle subject to experimental realization”: Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, section 9.1.3

    Google Scholar 

  256. The reason why an electron pair forms a covalent bond has perhaps not been fully settled. See (a) Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Engelwood Cliffs, pp 362–363, and top of p 364; (b) Backsay GB, Reimers JR, Nordholm S (1997) J Chem Ed 74: 1494

    Google Scholar 

  257. E.g. (a) Electron density on an atom: Wheland GW, Pauling L (1935) J Am Chem Soc 57:2086. (b) Pi-bond order: Coulson CA (1939) Proc Roy Soc A169:413

    Google Scholar 

  258. (a) Mulliken RS (1955) J Chem Phys 23: 1833. (b) Mulliken RS (1962) J Chem Phys 36: 3428. (c) Reference [1a], section 15.6

    Google Scholar 

  259. Mayer I (1983) Chem Phys Lett 97: 270

    Google Scholar 

  260. Löwdin P-O (1970) Adv Quant Chem 5:185

    Article  Google Scholar 

  261. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  262. Mayer I (1995) Email to the Computational Chemistry List (CCL), 1995 March 30

    Google Scholar 

  263. Some examples: (a) General survey: Bridgeman A, Cavigliasso G, Ireland LR, Rothery J (2001) J Chem Soc Dalton Trans 2095; (b) Ruthenium complexes: Fowe EP, Therrien B, Suss-Fink G, Daul C (2008) Inorg Chem 47:42. (c) Simple sulfur compounds: Mayer I, Revesz M (1983) Inorganica Chimica Acta, 77: L205

    Google Scholar 

  264. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, pp 312–315

    Google Scholar 

  265. Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, Essex, pp 79–83

    Google Scholar 

  266. Milani A (2010) Castiglioni. J Phys Chem A 114:624

    Article  CAS  PubMed  Google Scholar 

  267. (a) West AC, Schmidt MW, Gordon MS, Ruedenberg K (2013) J Chem Phys 139:234107. (b) Ruedenberg K (1962) Rev Mod Phys 34:326. (c) West AC, Schmidt MW, Gordon MS, Ruedenberg K (2015) J Phys Chem A 119:10368. (d) West AC, Schmidt MW, Gordon MS, Ruedenberg K (2015) J Phys Chem A 119:10376

    Google Scholar 

  268. (a) Brinck T (1998) Theoretical organic chemistry, Parkanyi C (ed) Elsevier, New York. (b) Marynick DS (1997) J Comp Chem 18:955

    Google Scholar 

  269. (a) Use of bond orders in deciding if a covalent bond is present: Schleyer PvR, Buzek P, Müller T, Apeloig Y, Siehl H-U (1993) Angew Chem Int Ed Engl 32:1471. (b) Use of bond order in estimating progress along a reaction coordinate: Lendvay G (1994) J Phys Chem 98:6098

    Google Scholar 

  270. (a) Berlin T (1951) J Chem Phys 19:208. (b) Bader RWF (1964) J Am Chem Soc 86:5070

    Google Scholar 

  271. Bader RWF, Beddall PM (1973) J Am Chem Soc 95:305

    Article  CAS  Google Scholar 

  272. Bader RWF (1975) Acc Chem Res 8:34

    Article  CAS  Google Scholar 

  273. Bader RWF (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  274. Bader RFW (1990) Atoms in molecules. Oxford University Press, Oxford

    Book  Google Scholar 

  275. Bader RWF (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  276. Popelier PLA (1999) Atoms in molecules: an introduction. Pearson Education, London

    Google Scholar 

  277. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  278. Bader RFW (2007) J Phys Chem A 111:7966

    Article  CAS  PubMed  Google Scholar 

  279. Reference [1a], section 14.1

    Google Scholar 

  280. Zhao D-X, Zhao J, Yang Z-Z (2020) J Phys Chem A 124:5023

    Article  CAS  PubMed  Google Scholar 

  281. (a) Reference [274], p 40. (b) Reference [274], p 75

    Google Scholar 

  282. Jacobsen H (2009) J Comp Chem 30:1093

    Article  CAS  Google Scholar 

  283. Grabowski SJ (2007) J Phys Chem A 111:13537

    Article  CAS  PubMed  Google Scholar 

  284. (a) Grabowski SL, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 432:33. (b) Grabowski SL (2007) J Phys Chem A 111:13537

    Google Scholar 

  285. Werstiuk NH, Sokol W (2008) Can J Chem 86:737

    Article  CAS  Google Scholar 

  286. Vila A, Mosquera RA (2006) J Phys Chem A 110:11752

    Article  CAS  PubMed  Google Scholar 

  287. Lopez JL, Grana AM, Mosquera RA (2009) J Phys Chem A 113:2652

    Article  CAS  PubMed  Google Scholar 

  288. Gillespie RJ, Popelier PLA (2001) Long review of “Chemical bonding and molecular geometry from Lewis to electron densities”. Oxford University press, New York: Frenking G (2003) Angew Chem Int Ed Engl 42:143

    Google Scholar 

  289. Gillespie RJ, Popelier PLA (2003) Angew Chem Int Ed Engl 42:3331

    Article  CAS  Google Scholar 

  290. Frenking G (2003) Angew Chem Int Ed Engl 42:3335

    Article  CAS  Google Scholar 

  291. Bader RFW (2003) Int J Quant Chem 94:173

    Article  CAS  Google Scholar 

  292. Bader RFW, Matta CF (2004) J Phys Chem A 108:8385

    Article  CAS  Google Scholar 

  293. Kovacs A, Esterhuysen C, Frenking G (1813) Chem Eur J 2005:11

    Google Scholar 

  294. Bader RFW (2006) Chem Eur J 12:7769

    Article  CAS  PubMed  Google Scholar 

  295. Frenking G, Esterhuysen C, Kovacs A (2006) Chem Eur J 12:7773

    Article  CAS  Google Scholar 

  296. Matta CF, Hernández-Trujillo J, Tang T-H, Bader RFW (1940) Chem Eur J 2003:9

    Google Scholar 

  297. Poater J, Solà M, Bickelhaupt M (2006) Chem Eur J 12:2889

    Article  CAS  PubMed  Google Scholar 

  298. Bader RFW (2006) Chem Eur J 12:2896

    Article  CAS  PubMed  Google Scholar 

  299. Poater J, Solà M, Bickelhaupt M (2006) Chem Eur J 12:2902

    Article  CAS  PubMed  Google Scholar 

  300. An old classic that is still useful: Jaffé HH, Orchin M (1962) Theory and applications of ultraviolet spectroscopy. Wiley, New York

    Google Scholar 

  301. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, pp 213–227

    Google Scholar 

  302. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, p 213

    Google Scholar 

  303. Helgaker T, Jaszuński M, Ruud K (1999) Chem Rev 99:293

    Article  CAS  PubMed  Google Scholar 

  304. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, pp 53–54 and 104–105

    Google Scholar 

  305. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497

    Article  CAS  Google Scholar 

  306. Casabianca LB, de Dios AC (2008) J Chem Phys 128:052201

    Article  PubMed  Google Scholar 

  307. Auer AA (2009) Chem Phys Lett 467:230

    Article  CAS  Google Scholar 

  308. Pérez MP, Peakman TM, Alex A, Higginson PD, Mitchell JC, Snowden MJ, Inaki I (2006) J Org Chem 71:3103

    Article  PubMed  Google Scholar 

  309. Wolf AD, Kane VV, Levin RH, Jones M (1973) J Am Chem Soc 95:1680

    Article  CAS  Google Scholar 

  310. (a) Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317. (b) West R, Buffy J, Haaf M, Müller T, Gehrhus B, Lappert MF, Apeloig Y (1998) J Am Chem Soc 120:1639. (c) Chen Z, Wannere CS, Corminboef C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842. (d) Morao I, Cossio FP (1999) J Org Chem 64:1868. (e) Useful “NICS curves”: Stanger A (2010) J Prog Chem 75:2281. (e) Connection of NICS with stabilization energy: Stanger A (2013) J Org Chem 78:12374. (f) Complicated, cautionary work: Torres JJ, Islas R, Osorio E, Harrison JG, Tiznado W, Merino G (2013) J Phys Chem A 117:5529

    Google Scholar 

  311. Antušek A, Kędziera D, Jackowski K, Jaszuński M, Makulski W (2008) Chem Physics 352:320

    Article  Google Scholar 

  312. (a) Lowe JP (1993) Quantum chemistry, 2nd edn. Academic, New York, pp 276–277, 288, 372–373. (b) General review of EA: Rienstra-Kiracofe JC, Tschumper GC, Schaefer III HF, Nandi S, Ellison GB (2002) Chem Rev 102:231

    Google Scholar 

  313. Gross JH (2004) Mass spectrometry. Springer, New York, pp 16–20

    Book  Google Scholar 

  314. Levin RD, Lias SG (1982) Ionization potential and appearance potential measurements, 1971–1981. National Bureau of Standards, Washington, DC

    Book  Google Scholar 

  315. (a) Maksić ZB, Vianello R (2002) How good is Koopmans’ approximation? J Phys Chem A 106:6515. (b) See e.g. reference [1b], pp 361–363; reference [1c], pp 278–280; reference [1d], pp 127–128; reference [1g], pp 24, 116. (c) A novel look at Koopmans’ theorem: Angeli C (1934) J Chem Ed 75:1494. (c) Koopmans T (1934) Physica 1:104

    Google Scholar 

  316. Smith MB, March J (2001) March’s advanced organic chemistry, 5th edn. Wiley, New York, pp 10–12

    Google Scholar 

  317. Curtiss LA, Nobes RH, Pople JA, Radom L (1992) J Chem Phys 97:6766

    Article  CAS  Google Scholar 

  318. Lyons JE, Rasmussen DR, McGrath MP, Nobes RH, Radom L (1994) Ang Chem Int Ed Engl 33:1667

    Article  Google Scholar 

  319. (a) Schmidt MW, Hull EA, Windus TL (2015) J Phys Chem A 119:10408. (b) DFT with close-to-exact Kohn-Sham orbitals give virtual-occupied energy gaps very close to excitation energies, good values for ionization energies and Rydberg transitions, and realistic shapes of virtual orbitals: van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Theory Comput 10:4432

    Google Scholar 

  320. Robinson PJ, Alexandrova N (2015) J Phys Chem A 119:12862

    Article  CAS  PubMed  Google Scholar 

  321. (a) Habraken CL (1996) …Chemistry, the most visual of sciences…. J Sci Educ Philos 5:193. (b) Bower JE (ed) (1995) Data visualization in molecular science: tools for insight and innovation. Addison-Wesley, Reading. (c) Pickover C, Tewksbury S (1994) Frontiers of scientific visualization. Wiley. (d) Johnson (2001) Colors are truly brilliant in trek up mount metaphor. New York Times, 25 December

    Google Scholar 

  322. Ihlenfeldt W-D (1997) J Mol Model 3:386

    Article  CAS  Google Scholar 

  323. Hoffmann R, Laszlo P (1991) Angew Chem Int Ed Engl 30:1

    Article  Google Scholar 

  324. GaussView: Gaussian Inc., Carnegie Office Park, Bldg. 6, Pittsburgh, PA 15106, USA

    Google Scholar 

  325. Eliel EL, Wilen SH (1994) Stereochemistry of carbon compounds. Wiley, New York, pp 502–507 and 686–690

    Google Scholar 

  326. Iijima T, Kondou T, Takenaka T (1998) J Mol Struct 445:23

    Article  CAS  Google Scholar 

  327. The term is not just whimsy on the author’s part: certain stereoelectronic phenomena arising from the presence of lone pairs on heteroatoms in a 1,3-relationship were once called the “rabbit-ear effect”, and a photograph of the eponymous creature even appeared on the cover of the Swedish journal Kemisk Tidskrift. History of the term, photograph: Eliel EL (1990) From Cologne to Chapel Hill. American Chemical Society, Washington, DC, pp 62–64

    Google Scholar 

  328. Politzer P, Murray JS (1996) Chapter 7 in Reviews in computational chemistry, vol 2. Lipkowitz KB, Boyd DB (eds). VCH, New York

    Google Scholar 

  329. Molecular mechanics geometries with HF/6-31G* wavefunctions gave for a set of 15 standard amines a standard deviation of 0.83 (E. Lewars and J. M. Parnis, unpublished). For carboxylic acids a comparably useful correlation is reported in Hehre WJ (2003) A guide to molecular mechanics and quantum chemical calculations. Wavefunction, Inc., Irvine, p 478. Surprisingly, the calculations are for in vacuum but the experimental values are for in water. The solvent effect, energetically big, must largely cancel out

    Google Scholar 

  330. Hehre WJ, Shusterman AJ, Huang WW (1996) A laboratory book of computational organic chemistry. Wavefunction Inc., Irvine, pp 141–142

    Google Scholar 

  331. (a) Laube T (1989) J Am Chem Soc 111:9224. (b) Kirmse W, Rainer S, Streu J (1984) J Am Chem Soc 106:24654. (c) Houriet R, Schwarz H, Zummack W, Andrade JG, Schleyer PvR (1981) Nouveau J de Chimie 5:505. (d) Olah GA, Prakash GKS, Rawdah TN, Whittaker D, Rees JC (1979) J Am Chem Soc 101:3935. (e) A polemic against the formation of a bishomocyclopropenyl cation is a certain case: Sorenson TS (1976) Chem Commun 45

    Google Scholar 

  332. Olah GA, Liang G (1975) J Am Chem Soc 97:6803. and references therein

    Article  CAS  Google Scholar 

  333. Hehre WJ, Shusterman AJ, Nelson JE (1998) The molecular modelling workbook of organic chemistry. Wavefunction Inc., Irvine

    Google Scholar 

  334. (a) Coulson’s remarks: Bolcer JD, Hermann RB (1996) Chapter 1 in Reviews in computational chemistry, vol 5. Lipkowitz KB, Boyd DB (eds). VCH, New York, p 12; see too further remarks, quoted on p. 13. (b) The increase in computer speed is also dramatically shown in data provided in Gaussian News, 1993, 4, 1. The approximate times for a single-point HF/6-31G** calculation on 1,3,5-triamino-2,4,6-trinitrobenzene (300 basis functions) are reported as: ca. 1967, on a CDC 1604, 200 years (estimated); ca. 1992, on a 486 DX personal computer, 20 hours. This is a speed factor of 90,000 in 25 years. The price factor for the machines may not be as dramatic, but suffice it to say that the CDC 1604 was not considered a personal computer. In mid-2009, on a well-endowed personal computer (ca. $4000) these results were obtained for single-point HF/6-31G** calculations on 1,3,5-triamino-2,4,6-trinitrobenzene: starting from a C3 geometry, 23 seconds; starting from a C1 geometry, 42 seconds. The increase in speed represented by 42 seconds in 2009 is, cf. 200 years in 1967, a factor of about 108 in 42 years; cf. 20 hours in 1992, a factor of about 1700 in 17 years

    Google Scholar 

  335. Fales BS, Levine BG (2015) J Chem Theory Comput 11:4708

    Google Scholar 

  336. Acevido O, Jorgenson WL (2010) Acc Chem Res 43:142

    Google Scholar 

  337. Fragment QM methods: “Beyond QM/MM” issue: Acc Chem Res (2014) 47(9)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Easier Questions

  1. 1.

    In the term Hartree-Fock, what, essentially, were the contributions of each of these two people?

  2. 2.

    What is a spin orbital? A spatial orbital?

  3. 3.

    At which step in the derivation of the Hartree-Fock energy does the assumption that each electron sees an “average electron cloud” appear?

  4. 4.

    For a closed-shell molecule in the ground electronic state, the number of occupied molecular orbitals is half the number of electrons, but there is no limit to the number of virtual orbitals. Explain.

  5. 5.

    In the simple Hückel method, csi denotes the basis function coefficient for the contribution of atom number s (in whatever numbering scheme we choose) to MO number i. In the ab initio method, csi still refers to MO number i, but the s does not necessarily denote atom number s. Explain.

  6. 6.

    The derivation of the Roothaan-hall equations involves some key concepts: Slater determinant, Schrödinger equation, explicit Hamiltonian operator, energy minimization, and LCAO. Using these, summarize the steps leading to the Roothaan-Hall equations FC = Scε.

  7. 7.

    What are the similarities and the differences between the basis set of the extended Hückel method and the ab initio STO-3G basis set?

  8. 8.

    In the simple and extended Hückel methods, the molecular orbitals are calculated and then filled from the bottom-up with the available electrons. However, in ab initio calculations, the occupancy of the orbitals is taken into account as they are being calculated. Explain.

    Hint: look at the expression for the Fock matrix elements in terms of the density matrix.

  9. 9.

    Isodesmic reactions have been used to investigate aromatic stabilization, but there is not a unique isodesmic reaction for each problem. Write two isodesmic reactions for the ring-opening of benzene, both of which have on each side of the equation the same number of each kind of bond. Have you any reason to prefer one of the equations to the other?

  10. 10.

    List the strengths and weaknesses of ab initio calculations compared to molecular mechanics and extended Hückel calculations. State the molecular features that can be calculated by each method.

Harder Questions

  1. 1.

    Does the term ab initio imply that such calculations are “exact”? In what sense might ab initio calculations be said to be semiempirical – or at least not fully a priori?

  2. 2.

    Can the Schrödinger equation be solved exactly for a species with two protons and one electron? Why or why not?

  3. 3.

    The input for an ab initio calculation (or a semiempirical calculation of the type discussed in Chap. 6, or a DFT calculation – Chap. 7) on a molecule is usually just the cartesian coordinates of the atoms (plus the charge and multiplicity). So how does the program know where the bonds are, that is, what the structural formula of the molecule is?

  4. 4.

    Why is it that (in the usual treatment) the calculation of the internuclear repulsion energy term is easy, in contrast to the electronic energy term?

  5. 5.

    In an ab initio calculation on H2 or HHe+, one kind of interelectronic interaction does not arise; what is it and why?

  6. 6.

    Why are basis functions not necessarily the same as atomic orbitals?

  7. 7.

    One desirable feature of a basis set is that it should be “balanced.” How might a basis set be unbalanced?

  8. 8.

    In a Hartree-Fock calculation, you can always get a lower energy (a “better” energy, in the sense that it is closer to the true energy) for a molecule by using a bigger basis set, as long as the HF limit has not been reached. Yet a bigger basis set does not necessarily give better geometries and better relative (i.e., activation and reaction) energies. Why is this so?

  9. 9.

    Why is size consistency in an ab initio method considered more important than variational behavior (MP2 is size consistent but not variational)?

  10. 10.

    A common alternative to writing a Hartree-Fock wavefunction as an explicit Slater determinant is to express it using a permutation operator \( \hat{P} \) which permutes (switches) electrons around in MOs. Examine the Slater determinant for a two-electron closed-shell molecule, and then try to rewrite the wavefunction using. \( \hat{P}. \)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewars, E.G. (2024). Ab Initio Calculations. In: Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-51443-2_5

Download citation

Publish with us

Policies and ethics

Navigation